Proton Beam Abundance Variations and Their Relation to Alpha Particle Properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439894" target="_blank" >RIV/00216208:11320/21:10439894 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W_buZaxmt7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W_buZaxmt7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4357/ac2c03" target="_blank" >10.3847/1538-4357/ac2c03</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Proton Beam Abundance Variations and Their Relation to Alpha Particle Properties
Popis výsledku v původním jazyce
Less abundant but still dynamically important solar wind components are the proton beam and alpha particles, which usually contribute similarly to the total ion momentum. The main characteristics of alpha particles are determined by the solar wind source region, but the origin of the proton beam and its properties are still not fully explained. We use the plasma data measured in situ on the path from 0.3 to 1 au (Helios 1 and 2) and focus on the proton beam development with an increasing radial distance as well as on the connection between the proton beam and alpha particle properties. We found that the proton beam relative abundance increases with increasing distance from the Sun in the collisionally young streams. Among the mechanisms suggested for beam creation, we have identified the wave-particle interactions with obliquely propagating Alfven modes being consistent with observations. As the solar wind streams get collisionally older, the proton beam decay gradually dominates and the beam abundance is reduced. In search for responsible mechanisms, we found that the content of alpha particles is correlated with the proton beam abundance, and this effect is more pronounced in the fast solar wind streams during the solar maximum. We suggest that Coulomb collisions are the main agent leading to merging of the proton beam and core. We are also showing that the variations of the proton beam abundance are correlated with a decrease of the alpha particle velocity in order to maintain the total momentum balance in the solar wind frame.
Název v anglickém jazyce
Proton Beam Abundance Variations and Their Relation to Alpha Particle Properties
Popis výsledku anglicky
Less abundant but still dynamically important solar wind components are the proton beam and alpha particles, which usually contribute similarly to the total ion momentum. The main characteristics of alpha particles are determined by the solar wind source region, but the origin of the proton beam and its properties are still not fully explained. We use the plasma data measured in situ on the path from 0.3 to 1 au (Helios 1 and 2) and focus on the proton beam development with an increasing radial distance as well as on the connection between the proton beam and alpha particle properties. We found that the proton beam relative abundance increases with increasing distance from the Sun in the collisionally young streams. Among the mechanisms suggested for beam creation, we have identified the wave-particle interactions with obliquely propagating Alfven modes being consistent with observations. As the solar wind streams get collisionally older, the proton beam decay gradually dominates and the beam abundance is reduced. In search for responsible mechanisms, we found that the content of alpha particles is correlated with the proton beam abundance, and this effect is more pronounced in the fast solar wind streams during the solar maximum. We suggest that Coulomb collisions are the main agent leading to merging of the proton beam and core. We are also showing that the variations of the proton beam abundance are correlated with a decrease of the alpha particle velocity in order to maintain the total momentum balance in the solar wind frame.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-18993S" target="_blank" >GA19-18993S: Přenos energie variací slunečního větru z velkých do malých škál</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal
ISSN
0004-637X
e-ISSN
—
Svazek periodika
923
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
170
Kód UT WoS článku
000732557200001
EID výsledku v databázi Scopus
2-s2.0-85122963782