Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439926" target="_blank" >RIV/00216208:11320/21:10439926 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1351324920000224" target="_blank" >10.1017/S1351324920000224</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks
Popis výsledku v původním jazyce
In this paper, we present a novel lemmatization method based on a sequence-To-sequence neural network architecture and morphosyntactic context representation. In the proposed method, our context-sensitive lemmatizer generates the lemma one character at a time based on the surface form characters and its morphosyntactic features obtained from a morphological tagger. We argue that a sliding window context representation suffers from sparseness, while in majority of cases the morphosyntactic features of a word bring enough information to resolve lemma ambiguities while keeping the context representation dense and more practical for machine learning systems. Additionally, we study two different data augmentation methods utilizing autoencoder training and morphological transducers especially beneficial for low-resource languages. We evaluate our lemmatizer on 52 different languages and 76 different treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on average by 19% relative. The lemmatizer together with all trained models is made available as a part of the Turku-neural-parsing-pipeline under the Apache 2.0 license.
Název v anglickém jazyce
Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks
Popis výsledku anglicky
In this paper, we present a novel lemmatization method based on a sequence-To-sequence neural network architecture and morphosyntactic context representation. In the proposed method, our context-sensitive lemmatizer generates the lemma one character at a time based on the surface form characters and its morphosyntactic features obtained from a morphological tagger. We argue that a sliding window context representation suffers from sparseness, while in majority of cases the morphosyntactic features of a word bring enough information to resolve lemma ambiguities while keeping the context representation dense and more practical for machine learning systems. Additionally, we study two different data augmentation methods utilizing autoencoder training and morphological transducers especially beneficial for low-resource languages. We evaluate our lemmatizer on 52 different languages and 76 different treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on average by 19% relative. The lemmatizer together with all trained models is made available as a part of the Turku-neural-parsing-pipeline under the Apache 2.0 license.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Natural Language Engineering
ISSN
1351-3249
e-ISSN
1469-8110
Svazek periodika
27
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
30
Strana od-do
545-574
Kód UT WoS článku
000692212500004
EID výsledku v databázi Scopus
2-s2.0-85086474542