Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439926" target="_blank" >RIV/00216208:11320/21:10439926 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1351324920000224" target="_blank" >10.1017/S1351324920000224</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks

  • Popis výsledku v původním jazyce

    In this paper, we present a novel lemmatization method based on a sequence-To-sequence neural network architecture and morphosyntactic context representation. In the proposed method, our context-sensitive lemmatizer generates the lemma one character at a time based on the surface form characters and its morphosyntactic features obtained from a morphological tagger. We argue that a sliding window context representation suffers from sparseness, while in majority of cases the morphosyntactic features of a word bring enough information to resolve lemma ambiguities while keeping the context representation dense and more practical for machine learning systems. Additionally, we study two different data augmentation methods utilizing autoencoder training and morphological transducers especially beneficial for low-resource languages. We evaluate our lemmatizer on 52 different languages and 76 different treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on average by 19% relative. The lemmatizer together with all trained models is made available as a part of the Turku-neural-parsing-pipeline under the Apache 2.0 license.

  • Název v anglickém jazyce

    Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks

  • Popis výsledku anglicky

    In this paper, we present a novel lemmatization method based on a sequence-To-sequence neural network architecture and morphosyntactic context representation. In the proposed method, our context-sensitive lemmatizer generates the lemma one character at a time based on the surface form characters and its morphosyntactic features obtained from a morphological tagger. We argue that a sliding window context representation suffers from sparseness, while in majority of cases the morphosyntactic features of a word bring enough information to resolve lemma ambiguities while keeping the context representation dense and more practical for machine learning systems. Additionally, we study two different data augmentation methods utilizing autoencoder training and morphological transducers especially beneficial for low-resource languages. We evaluate our lemmatizer on 52 different languages and 76 different treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on average by 19% relative. The lemmatizer together with all trained models is made available as a part of the Turku-neural-parsing-pipeline under the Apache 2.0 license.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Natural Language Engineering

  • ISSN

    1351-3249

  • e-ISSN

    1469-8110

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    30

  • Strana od-do

    545-574

  • Kód UT WoS článku

    000692212500004

  • EID výsledku v databázi Scopus

    2-s2.0-85086474542