Parameter space factorization for zero-shot learning across tasks and languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439969" target="_blank" >RIV/00216208:11320/21:10439969 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TsbpRe7Ziu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TsbpRe7Ziu</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/tacl_a_00374" target="_blank" >10.1162/tacl_a_00374</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameter space factorization for zero-shot learning across tasks and languages
Popis výsledku v původním jazyce
Most combinations of NLP tasks and language varieties lack in-domain examples for supervised training because of the paucity of annotated data. How can neural models make sample-efficient generalizations from task-language combinations with available data to low-resource ones? In this work, we propose a Bayesian generative model for the space of neural parameters. We assume that this space can be factorized into latent variables for each language and each task. We infer the posteriors over such latent variables based on data from seen task-language combinations through variational inference. This enables zero-shot classification on unseen combinations at prediction time. For instance, given training data for named entity recognition (NER) in Vietnamese and for part-of-speech (POS) tagging in Wolof, our model can perform accurate predictions for NER in Wolof. In particular, we experiment with a typologically diverse sample of 33 languages from 4 continents and 11 families, and show that our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods. Our code is available at github.com/cambridgeltl/parameter-factorization.
Název v anglickém jazyce
Parameter space factorization for zero-shot learning across tasks and languages
Popis výsledku anglicky
Most combinations of NLP tasks and language varieties lack in-domain examples for supervised training because of the paucity of annotated data. How can neural models make sample-efficient generalizations from task-language combinations with available data to low-resource ones? In this work, we propose a Bayesian generative model for the space of neural parameters. We assume that this space can be factorized into latent variables for each language and each task. We infer the posteriors over such latent variables based on data from seen task-language combinations through variational inference. This enables zero-shot classification on unseen combinations at prediction time. For instance, given training data for named entity recognition (NER) in Vietnamese and for part-of-speech (POS) tagging in Wolof, our model can perform accurate predictions for NER in Wolof. In particular, we experiment with a typologically diverse sample of 33 languages from 4 continents and 11 families, and show that our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods. Our code is available at github.com/cambridgeltl/parameter-factorization.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the Association for Computational Linguistics
ISSN
2307-387X
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
01.02.2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
410-428
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85110409623