Simulations of expected signal and background of gamma-ray sources by large field-of-view detectors aboard CubeSats
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440243" target="_blank" >RIV/00216208:11320/21:10440243 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/21:00121538
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ybix7qyXzf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ybix7qyXzf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/1.JATIS.7.2.028004" target="_blank" >10.1117/1.JATIS.7.2.028004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulations of expected signal and background of gamma-ray sources by large field-of-view detectors aboard CubeSats
Popis výsledku v původním jazyce
In recent years, the number of CubeSats (U-class spacecrafts) launched into space has increased exponentially marking the dawn of the nanosatellite technology. In general, these satellites have a much smaller mass budget compared to conventional scientific satellites, which limits shielding of scientific instruments against direct and indirect radiation in space. We present a simulation framework to quantify the signal in large field-of-view gamma-ray scintillation detectors of satellites induced by x-ray/gamma-ray transients, by taking into account the response of the detector. Furthermore, we quantify the signal induced by x-ray and particle background sources at a Low-Earth Orbit outside South Atlantic Anomaly and polar regions. Finally, we calculate the signal-to-noise ratio (SNR) taking into account different energy threshold levels. Our simulation can be used to optimize material composition and predict detectability of various astrophysical sources by CubeSats. We apply the developed simulation to a satellite belonging to a planned CAMELOT CubeSat constellation. This project mainly aims to detect short and long gamma-ray bursts (GRBs) and as a secondary science objective, to detect soft gamma-ray repeaters (SGRs) and terrestrial gamma-ray flashes (TGFs). The simulation includes a detailed computer-aided design model of the satellite to take into account the interaction of particles with the material of the satellite as accurately as possible. Results of our simulations predict that CubeSats can complement the large space observatories in high-energy astrophysics for observations of GRBs, SGRs, and TGFs. For the detectors planned to be on board the CAMELOT CubeSats, the simulations show that detections with SNR of at least 9 for median GRB and SGR fluxes are achievable. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
Název v anglickém jazyce
Simulations of expected signal and background of gamma-ray sources by large field-of-view detectors aboard CubeSats
Popis výsledku anglicky
In recent years, the number of CubeSats (U-class spacecrafts) launched into space has increased exponentially marking the dawn of the nanosatellite technology. In general, these satellites have a much smaller mass budget compared to conventional scientific satellites, which limits shielding of scientific instruments against direct and indirect radiation in space. We present a simulation framework to quantify the signal in large field-of-view gamma-ray scintillation detectors of satellites induced by x-ray/gamma-ray transients, by taking into account the response of the detector. Furthermore, we quantify the signal induced by x-ray and particle background sources at a Low-Earth Orbit outside South Atlantic Anomaly and polar regions. Finally, we calculate the signal-to-noise ratio (SNR) taking into account different energy threshold levels. Our simulation can be used to optimize material composition and predict detectability of various astrophysical sources by CubeSats. We apply the developed simulation to a satellite belonging to a planned CAMELOT CubeSat constellation. This project mainly aims to detect short and long gamma-ray bursts (GRBs) and as a secondary science objective, to detect soft gamma-ray repeaters (SGRs) and terrestrial gamma-ray flashes (TGFs). The simulation includes a detailed computer-aided design model of the satellite to take into account the interaction of particles with the material of the satellite as accurately as possible. Results of our simulations predict that CubeSats can complement the large space observatories in high-energy astrophysics for observations of GRBs, SGRs, and TGFs. For the detectors planned to be on board the CAMELOT CubeSats, the simulations show that detections with SNR of at least 9 for median GRB and SGR fluxes are achievable. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Astronomical Telescopes Instruments and Systems
ISSN
2329-4124
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
43
Strana od-do
028004
Kód UT WoS článku
000674834700040
EID výsledku v databázi Scopus
2-s2.0-85110667341