On restarting automata with auxiliary symbols and small window size
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440768" target="_blank" >RIV/00216208:11320/21:10440768 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9rNOCNCz15" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9rNOCNCz15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/ita/2021003" target="_blank" >10.1051/ita/2021003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On restarting automata with auxiliary symbols and small window size
Popis výsledku v původním jazyce
Here we show that for monotone RWW- (and RRWW-) automata, window size two is sufficient, both in the nondeterministic as well as in the deterministic case. For the former case, this is done by proving that each context-free language is already accepted by a monotone RWW-automaton of window size two. In the deterministic case, we first prove that each deterministic pushdown automaton can be simulated by a deterministic monotone RWW-automaton of window size three, and then we present a construction that transforms a deterministic monotone RWW-automaton of window size three into an equivalent automaton of the same type that has window size two. Furthermore, we study the expressive power of shrinking RWW- and RRWW-automata the window size of which is just one or two. We show that for shrinking RRWW-automata that are nondeterministic, window size one suffices, while for nondeterministic shrinking RWW-automata, we already need window size two to accept all growing context-sensitive languages. In the deterministic case, shrinking RWW- and RRWW-automata of window size one accept only regular languages, while those of window size two characterize the Church-Rosser languages.
Název v anglickém jazyce
On restarting automata with auxiliary symbols and small window size
Popis výsledku anglicky
Here we show that for monotone RWW- (and RRWW-) automata, window size two is sufficient, both in the nondeterministic as well as in the deterministic case. For the former case, this is done by proving that each context-free language is already accepted by a monotone RWW-automaton of window size two. In the deterministic case, we first prove that each deterministic pushdown automaton can be simulated by a deterministic monotone RWW-automaton of window size three, and then we present a construction that transforms a deterministic monotone RWW-automaton of window size three into an equivalent automaton of the same type that has window size two. Furthermore, we study the expressive power of shrinking RWW- and RRWW-automata the window size of which is just one or two. We show that for shrinking RRWW-automata that are nondeterministic, window size one suffices, while for nondeterministic shrinking RWW-automata, we already need window size two to accept all growing context-sensitive languages. In the deterministic case, shrinking RWW- and RRWW-automata of window size one accept only regular languages, while those of window size two characterize the Church-Rosser languages.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RAIRO - Theoretical Informatics and Applications
ISSN
0988-3754
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
July 2021
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
31
Strana od-do
1-31
Kód UT WoS článku
000676011500004
EID výsledku v databázi Scopus
2-s2.0-85111260905