AUGVIC: Exploiting BiText Vicinity for Low-Resource NMT
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440902" target="_blank" >RIV/00216208:11320/21:10440902 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AUGVIC: Exploiting BiText Vicinity for Low-Resource NMT
Popis výsledku v původním jazyce
The success of Neural Machine Translation (NMT) largely depends on the availability of large bitext training corpora. Due to the lack of such large corpora in low-resource language pairs, NMT systems often exhibit poor performance. Extra relevant monolingual data often helps, but acquiring it could be quite expensive, especially for low-resource languages. Moreover, domain mismatch between bitext (train/test) and monolingual data might degrade the performance. To alleviate such issues, we propose AUGVIC, a novel data augmentation framework for low-resource NMT which exploits the vicinal samples of the given bitext without using any extra monolingual data explicitly. It can diversify the in-domain bitext data with finer level control. Through extensive experiments on four low-resource language pairs comprising data from different domains, we have shown that our method is comparable to the traditional back-translation that uses extra in-domain monolingual data. When we combine the synthetic parallel data generated from AUGVIC with the ones from the extra monolingual data, we achieve further improvements. We show that AUGVIC helps to attenuate the discrepancies between relevant and distant-domain monolingual data in traditional back-translation. To understand the contributions of different components of AUGVIC, we perform an in-depth framework analysis.
Název v anglickém jazyce
AUGVIC: Exploiting BiText Vicinity for Low-Resource NMT
Popis výsledku anglicky
The success of Neural Machine Translation (NMT) largely depends on the availability of large bitext training corpora. Due to the lack of such large corpora in low-resource language pairs, NMT systems often exhibit poor performance. Extra relevant monolingual data often helps, but acquiring it could be quite expensive, especially for low-resource languages. Moreover, domain mismatch between bitext (train/test) and monolingual data might degrade the performance. To alleviate such issues, we propose AUGVIC, a novel data augmentation framework for low-resource NMT which exploits the vicinal samples of the given bitext without using any extra monolingual data explicitly. It can diversify the in-domain bitext data with finer level control. Through extensive experiments on four low-resource language pairs comprising data from different domains, we have shown that our method is comparable to the traditional back-translation that uses extra in-domain monolingual data. When we combine the synthetic parallel data generated from AUGVIC with the ones from the extra monolingual data, we achieve further improvements. We show that AUGVIC helps to attenuate the discrepancies between relevant and distant-domain monolingual data in traditional back-translation. To understand the contributions of different components of AUGVIC, we perform an in-depth framework analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
ISBN
978-1-954085-54-1
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
3034-3045
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg
Místo konání akce
online
Datum konání akce
1. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—