Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MERGEDISTILL: Merging Pre-trained Language Models Using Distillation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440904" target="_blank" >RIV/00216208:11320/21:10440904 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MERGEDISTILL: Merging Pre-trained Language Models Using Distillation

  • Popis výsledku v původním jazyce

    Pre-trained multilingual language models (LMs) have achieved state-of-the-art results in cross-lingual transfer, but they often lead to an inequitable representation of languages due to limited capacity, skewed pre-training data, and sub-optimal vocabularies. This has prompted the creation of an ever-growing pretrained model universe, where each model is trained on large amounts of language or domain specific data with a carefully curated, linguistically informed vocabulary. However, doing so brings us back full circle and prevents one from leveraging the benefits of multilinguality. To address the gaps at both ends of the spectrum, we propose MERGEDISTILL, a framework to merge pre-trained LMs in a way that can best leverage their assets with minimal dependencies, using task-agnostic knowledge distillation. We demonstrate the applicability of our framework in a practical setting by leveraging pre-existing teacher LMs and training student LMs that perform competitively with or even outperform teacher LMs trained on several orders of magnitude more data and with a fixed model capacity. We also highlight the importance of teacher selection and its impact on student model performance.

  • Název v anglickém jazyce

    MERGEDISTILL: Merging Pre-trained Language Models Using Distillation

  • Popis výsledku anglicky

    Pre-trained multilingual language models (LMs) have achieved state-of-the-art results in cross-lingual transfer, but they often lead to an inequitable representation of languages due to limited capacity, skewed pre-training data, and sub-optimal vocabularies. This has prompted the creation of an ever-growing pretrained model universe, where each model is trained on large amounts of language or domain specific data with a carefully curated, linguistically informed vocabulary. However, doing so brings us back full circle and prevents one from leveraging the benefits of multilinguality. To address the gaps at both ends of the spectrum, we propose MERGEDISTILL, a framework to merge pre-trained LMs in a way that can best leverage their assets with minimal dependencies, using task-agnostic knowledge distillation. We demonstrate the applicability of our framework in a practical setting by leveraging pre-existing teacher LMs and training student LMs that perform competitively with or even outperform teacher LMs trained on several orders of magnitude more data and with a fixed model capacity. We also highlight the importance of teacher selection and its impact on student model performance.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

  • ISBN

    978-1-954085-54-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

    2874-2887

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg

  • Místo konání akce

    online

  • Datum konání akce

    1. 8. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku