Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Beyond the English web: Zero-shot cross-lingual and lightweight monolingual classification of registers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440911" target="_blank" >RIV/00216208:11320/21:10440911 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Beyond the English web: Zero-shot cross-lingual and lightweight monolingual classification of registers

  • Popis výsledku v původním jazyce

    We explore cross-lingual transfer of register classification for web documents. Registers, that is, text varieties such as blogs or news are one of the primary predictors of linguistic variation and thus affect the automatic processing of language. We introduce two new register-annotated corpora, FreCORE and SweCORE, for French and Swedish. We demonstrate that deep pre-trained language models perform strongly in these languages and outperform previous state-of-the-art in English and Finnish. Specifically, we show 1) that zero-shot cross-lingual transfer from the large English CORE corpus can match or surpass previously published monolingual models, and 2) that lightweight monolingual classification requiring very little training data can reach or surpass our zero-shot performance. We further analyse classification results finding that certain registers continue to pose challenges in particular for cross-lingual transfer.

  • Název v anglickém jazyce

    Beyond the English web: Zero-shot cross-lingual and lightweight monolingual classification of registers

  • Popis výsledku anglicky

    We explore cross-lingual transfer of register classification for web documents. Registers, that is, text varieties such as blogs or news are one of the primary predictors of linguistic variation and thus affect the automatic processing of language. We introduce two new register-annotated corpora, FreCORE and SweCORE, for French and Swedish. We demonstrate that deep pre-trained language models perform strongly in these languages and outperform previous state-of-the-art in English and Finnish. Specifically, we show 1) that zero-shot cross-lingual transfer from the large English CORE corpus can match or surpass previously published monolingual models, and 2) that lightweight monolingual classification requiring very little training data can reach or surpass our zero-shot performance. We further analyse classification results finding that certain registers continue to pose challenges in particular for cross-lingual transfer.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    EACL 2021 - 16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Student Research Workshop

  • ISBN

    978-1-954085-04-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    183-191

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg

  • Místo konání akce

    online

  • Datum konání akce

    19. 4. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku