Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Zero-shot cross-lingual dependency parsing through contextual embedding transformation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440973" target="_blank" >RIV/00216208:11320/21:10440973 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Zero-shot cross-lingual dependency parsing through contextual embedding transformation

  • Popis výsledku v původním jazyce

    Linear embedding transformation has been shown to be effective for zero-shot cross-lingual transfer tasks and achieve surprisingly promising results. However, cross-lingual embedding space mapping is usually studied in static word-level embeddings, where a space transformation is derived by aligning representations of translation pairs that are referred from dictionaries. We move further from this line and investigate a contextual embedding alignment approach which is sense-level and dictionary-free. To enhance the quality of the mapping, we also provide a deep view of properties of contextual embeddings, i.e., the anisotropy problem and its solution. Experiments on zero-shot dependency parsing through the concept-shared space built by our embedding transformation substantially outperform state-of-the-art methods using multilingual embeddings.

  • Název v anglickém jazyce

    Zero-shot cross-lingual dependency parsing through contextual embedding transformation

  • Popis výsledku anglicky

    Linear embedding transformation has been shown to be effective for zero-shot cross-lingual transfer tasks and achieve surprisingly promising results. However, cross-lingual embedding space mapping is usually studied in static word-level embeddings, where a space transformation is derived by aligning representations of translation pairs that are referred from dictionaries. We move further from this line and investigate a contextual embedding alignment approach which is sense-level and dictionary-free. To enhance the quality of the mapping, we also provide a deep view of properties of contextual embeddings, i.e., the anisotropy problem and its solution. Experiments on zero-shot dependency parsing through the concept-shared space built by our embedding transformation substantially outperform state-of-the-art methods using multilingual embeddings.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Adapt-NLP 2021 - 2nd Workshop on Domain Adaptation for NLP, Proceedings

  • ISBN

    978-1-954085-08-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    204-213

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg

  • Místo konání akce

    online

  • Datum konání akce

    20. 4. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku