TALEP at CMCL 2021 Shared Task: Non Linear Combination of Low and High-Level Features for Predicting Eye-Tracking Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440975" target="_blank" >RIV/00216208:11320/21:10440975 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TALEP at CMCL 2021 Shared Task: Non Linear Combination of Low and High-Level Features for Predicting Eye-Tracking Data
Popis výsledku v původním jazyce
In this paper we describe our contribution to the CMCL 2021 Shared Task, which consists in predicting 5 different eye tracking variables from English tokenized text. Our approach is based on a neural network that combines both raw textual features we extracted from the text and parser-based features that include linguistic predictions (e.g. part of speech) and complexity metrics (e.g., entropy of parsing). We found that both the features we considered as well as the architecture of the neural model that combined these features played a role in the overall performance. Our system achieved relatively high accuracy on the test data of the challenge and was ranked 2nd out of 13 competing teams and a total of 30 submissions.
Název v anglickém jazyce
TALEP at CMCL 2021 Shared Task: Non Linear Combination of Low and High-Level Features for Predicting Eye-Tracking Data
Popis výsledku anglicky
In this paper we describe our contribution to the CMCL 2021 Shared Task, which consists in predicting 5 different eye tracking variables from English tokenized text. Our approach is based on a neural network that combines both raw textual features we extracted from the text and parser-based features that include linguistic predictions (e.g. part of speech) and complexity metrics (e.g., entropy of parsing). We found that both the features we considered as well as the architecture of the neural model that combined these features played a role in the overall performance. Our system achieved relatively high accuracy on the test data of the challenge and was ranked 2nd out of 13 competing teams and a total of 30 submissions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CMCL 2021 - Workshop on Cognitive Modeling and Computational Linguistics, Proceedings
ISBN
978-1-954085-35-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
108-113
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg
Místo konání akce
online
Datum konání akce
10. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—