Analysing the dimension of mode in translation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441069" target="_blank" >RIV/00216208:11320/21:10441069 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5281/zenodo.4450014" target="_blank" >http://dx.doi.org/10.5281/zenodo.4450014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5281/zenodo.4450014" target="_blank" >10.5281/zenodo.4450014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysing the dimension of mode in translation
Popis výsledku v původním jazyce
The present chapter applies text classification to test how well we can distinguish between texts along two dimensions: a text-production dimension that distinguishes between translations and non-translations (where translations also include interpreted texts); and a mode dimension that distinguishes between and spoken and written texts. The chapter also aims to investigate the relationship between these two dimensions. Moreover, it investigates whether the same linguistic features that are derived from variational linguistics contribute to the prediction of mode in both translations and non-translations. The distributional information about these features was used to statistically model variation along the two dimensions. The results show that the same feature set can be used to automatically differentiate translations from non-translations, as well as spoken texts from the written texts. However, language variation along the dimension of mode is stronger than that along the dimension of text production, as classification into spoken and written texts delivers better results. Besides, linguistic features that contribute to the distinction between spoken and written mode are similar in both translated and non-translated language.
Název v anglickém jazyce
Analysing the dimension of mode in translation
Popis výsledku anglicky
The present chapter applies text classification to test how well we can distinguish between texts along two dimensions: a text-production dimension that distinguishes between translations and non-translations (where translations also include interpreted texts); and a mode dimension that distinguishes between and spoken and written texts. The chapter also aims to investigate the relationship between these two dimensions. Moreover, it investigates whether the same linguistic features that are derived from variational linguistics contribute to the prediction of mode in both translations and non-translations. The distributional information about these features was used to statistically model variation along the two dimensions. The results show that the same feature set can be used to automatically differentiate translations from non-translations, as well as spoken texts from the written texts. However, language variation along the dimension of mode is stronger than that along the dimension of text production, as classification into spoken and written texts delivers better results. Besides, linguistic features that contribute to the distinction between spoken and written mode are similar in both translated and non-translated language.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
60203 - Linguistics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Empirical studies in translation and discourse
ISBN
978-3-96110-301-0
Počet stran výsledku
21
Strana od-do
221-241
Počet stran knihy
246
Název nakladatele
Language Science Press
Místo vydání
Berlin
Kód UT WoS kapitoly
—