The Reality of Multi-Lingual Machine Translation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10456894" target="_blank" >RIV/00216208:11320/21:10456894 - isvavai.cz</a>
Výsledek na webu
<a href="http://ufal.mff.cuni.cz/biblio/attachments/2021-kocmi-m7555028765394592558.pdf" target="_blank" >http://ufal.mff.cuni.cz/biblio/attachments/2021-kocmi-m7555028765394592558.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Reality of Multi-Lingual Machine Translation
Popis výsledku v původním jazyce
Our book "The Reality of Multi-Lingual Machine Translation" discusses the benefits and perils of using more than two languages in machine translation systems. While focused on the particular task of sequence-to-sequence processing and multi-task learning, the book targets somewhat beyond the area of natural language processing. Machine translation is for us a prime example of deep learning applications where human skills and learning capabilities are taken as a benchmark that many try to match and surpass. We document that some of the gains observed in multi-lingual translation may result from simpler effects than the assumed cross-lingual transfer of knowledge. In the first, rather general part, the book will lead you through the motivation for multi-linguality, the versatility of deep neural networks especially in sequence-to-sequence tasks to complications of this learning. We conclude the general part with warnings against too optimistic and unjustified explanations of the gains that neural networ
Název v anglickém jazyce
The Reality of Multi-Lingual Machine Translation
Popis výsledku anglicky
Our book "The Reality of Multi-Lingual Machine Translation" discusses the benefits and perils of using more than two languages in machine translation systems. While focused on the particular task of sequence-to-sequence processing and multi-task learning, the book targets somewhat beyond the area of natural language processing. Machine translation is for us a prime example of deep learning applications where human skills and learning capabilities are taken as a benchmark that many try to match and surpass. We document that some of the gains observed in multi-lingual translation may result from simpler effects than the assumed cross-lingual transfer of knowledge. In the first, rather general part, the book will lead you through the motivation for multi-linguality, the versatility of deep neural networks especially in sequence-to-sequence tasks to complications of this learning. We conclude the general part with warnings against too optimistic and unjustified explanations of the gains that neural networ
Klasifikace
Druh
B - Odborná kniha
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-24210S" target="_blank" >GA18-24210S: Mnohojazyčný strojový překlad</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-80-88132-11-0
Počet stran knihy
199
Název nakladatele
UFAL
Místo vydání
Prague, Czechia
Kód UT WoS knihy
—