Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using linear algebra in decomposition of Farkas interpolants

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10430252" target="_blank" >RIV/00216208:11320/22:10430252 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Saupygyd2R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Saupygyd2R</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10009-021-00641-z" target="_blank" >10.1007/s10009-021-00641-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using linear algebra in decomposition of Farkas interpolants

  • Popis výsledku v původním jazyce

    The use of propositional logic and systems of linear inequalities over reals is a common means to model software for formal verification. Craig interpolants constitute a central building block in this setting for over-approximating reachable states, e.g. as candidates for inductive loop invariants. Interpolants for a linear system can be efficiently computed from a Simplex refutation by applying the Farkas&apos; lemma. However, these interpolants do not always suit the verification task-in the worst case, they can even prevent the verification algorithm from converging. This work introduces the decomposed interpolants, a fundamental extension of the Farkas interpolants, obtained by identifying and separating independent components from the interpolant structure, using methods from linear algebra. We also present an efficient polynomial algorithm to compute decomposed interpolants and analyse its properties. We experimentally show that the use of decomposed interpolants in model checking results in immediate convergence on instances where state-of-the-art approaches diverge. Moreover, since being based on the efficient Simplex method, the approach is very competitive in general.

  • Název v anglickém jazyce

    Using linear algebra in decomposition of Farkas interpolants

  • Popis výsledku anglicky

    The use of propositional logic and systems of linear inequalities over reals is a common means to model software for formal verification. Craig interpolants constitute a central building block in this setting for over-approximating reachable states, e.g. as candidates for inductive loop invariants. Interpolants for a linear system can be efficiently computed from a Simplex refutation by applying the Farkas&apos; lemma. However, these interpolants do not always suit the verification task-in the worst case, they can even prevent the verification algorithm from converging. This work introduces the decomposed interpolants, a fundamental extension of the Farkas interpolants, obtained by identifying and separating independent components from the interpolant structure, using methods from linear algebra. We also present an efficient polynomial algorithm to compute decomposed interpolants and analyse its properties. We experimentally show that the use of decomposed interpolants in model checking results in immediate convergence on instances where state-of-the-art approaches diverge. Moreover, since being based on the efficient Simplex method, the approach is very competitive in general.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-07487S" target="_blank" >GA20-07487S: Škálovatelné techniky pro analýzu komplexních vlastností počítačových systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal on Software Tools for Technology Transfer

  • ISSN

    1433-2779

  • e-ISSN

    1433-2787

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    15

  • Strana od-do

    111-125

  • Kód UT WoS článku

    000681522900001

  • EID výsledku v databázi Scopus

    2-s2.0-85111923705