Using linear algebra in decomposition of Farkas interpolants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10430252" target="_blank" >RIV/00216208:11320/22:10430252 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Saupygyd2R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Saupygyd2R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10009-021-00641-z" target="_blank" >10.1007/s10009-021-00641-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using linear algebra in decomposition of Farkas interpolants
Popis výsledku v původním jazyce
The use of propositional logic and systems of linear inequalities over reals is a common means to model software for formal verification. Craig interpolants constitute a central building block in this setting for over-approximating reachable states, e.g. as candidates for inductive loop invariants. Interpolants for a linear system can be efficiently computed from a Simplex refutation by applying the Farkas' lemma. However, these interpolants do not always suit the verification task-in the worst case, they can even prevent the verification algorithm from converging. This work introduces the decomposed interpolants, a fundamental extension of the Farkas interpolants, obtained by identifying and separating independent components from the interpolant structure, using methods from linear algebra. We also present an efficient polynomial algorithm to compute decomposed interpolants and analyse its properties. We experimentally show that the use of decomposed interpolants in model checking results in immediate convergence on instances where state-of-the-art approaches diverge. Moreover, since being based on the efficient Simplex method, the approach is very competitive in general.
Název v anglickém jazyce
Using linear algebra in decomposition of Farkas interpolants
Popis výsledku anglicky
The use of propositional logic and systems of linear inequalities over reals is a common means to model software for formal verification. Craig interpolants constitute a central building block in this setting for over-approximating reachable states, e.g. as candidates for inductive loop invariants. Interpolants for a linear system can be efficiently computed from a Simplex refutation by applying the Farkas' lemma. However, these interpolants do not always suit the verification task-in the worst case, they can even prevent the verification algorithm from converging. This work introduces the decomposed interpolants, a fundamental extension of the Farkas interpolants, obtained by identifying and separating independent components from the interpolant structure, using methods from linear algebra. We also present an efficient polynomial algorithm to compute decomposed interpolants and analyse its properties. We experimentally show that the use of decomposed interpolants in model checking results in immediate convergence on instances where state-of-the-art approaches diverge. Moreover, since being based on the efficient Simplex method, the approach is very competitive in general.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-07487S" target="_blank" >GA20-07487S: Škálovatelné techniky pro analýzu komplexních vlastností počítačových systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal on Software Tools for Technology Transfer
ISSN
1433-2779
e-ISSN
1433-2787
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
111-125
Kód UT WoS článku
000681522900001
EID výsledku v databázi Scopus
2-s2.0-85111923705