When does the Lanczos algorithm compute exactly?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10446641" target="_blank" >RIV/00216208:11320/22:10446641 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2jn0kV86XK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2jn0kV86XK</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1553/etna_vol55s547" target="_blank" >10.1553/etna_vol55s547</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
When does the Lanczos algorithm compute exactly?
Popis výsledku v původním jazyce
In theory, the Lanczos algorithm generates an orthogonal basis of the corresponding Krylov subspace. However, in finite precision arithmetic the orthogonality and linear independence of the computed Lanczos vectors is usually lost quickly. In this paper we study a class of matrices and starting vectors having a special nonzero structure that guarantees exact computations of the Lanczos algorithm whenever floating point arithmetic satisfying the IEEE 754 standard is used. Analogous results are formulated also for an implementation of the conjugate gradient method called cgLanczos. This implementation then computes approximations that agree with their exact counterparts to a relative accuracy given by the machine precision and the condition number of the system matrix. The results are extended to the Arnoldi algorithm, the nonsymmetric Lanczos algorithm, the Golub-Kahan bidiagonalization, the block-Lanczos algorithm, and their counterparts for solving linear systems.
Název v anglickém jazyce
When does the Lanczos algorithm compute exactly?
Popis výsledku anglicky
In theory, the Lanczos algorithm generates an orthogonal basis of the corresponding Krylov subspace. However, in finite precision arithmetic the orthogonality and linear independence of the computed Lanczos vectors is usually lost quickly. In this paper we study a class of matrices and starting vectors having a special nonzero structure that guarantees exact computations of the Lanczos algorithm whenever floating point arithmetic satisfying the IEEE 754 standard is used. Analogous results are formulated also for an implementation of the conjugate gradient method called cgLanczos. This implementation then computes approximations that agree with their exact counterparts to a relative accuracy given by the machine precision and the condition number of the system matrix. The results are extended to the Arnoldi algorithm, the nonsymmetric Lanczos algorithm, the Golub-Kahan bidiagonalization, the block-Lanczos algorithm, and their counterparts for solving linear systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Transactions on Numerical Analysis
ISSN
1068-9613
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
June 9, 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
547-567
Kód UT WoS článku
000813353900020
EID výsledku v databázi Scopus
—