SkyGAN: Towards Realistic Cloud Imagery for Image Based Lighting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447099" target="_blank" >RIV/00216208:11320/22:10447099 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.2312/sr.20221151" target="_blank" >https://doi.org/10.2312/sr.20221151</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2312/sr.20221151" target="_blank" >10.2312/sr.20221151</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SkyGAN: Towards Realistic Cloud Imagery for Image Based Lighting
Popis výsledku v původním jazyce
Achieving photorealism when rendering virtual scenes in movies or architecture visualizations often depends on providing a realistic illumination and background. Typically, spherical environment maps serve both as a natural light source from the Sun and the sky, and as a background with clouds and a horizon. In practice, the input is either a static high-resolution HDR photograph manually captured on location in real conditions, or an analytical clear sky model that is dynamic, but cannot model clouds. Our approach bridges these two limited paradigms: a user can control the sun position and cloud coverage ratio, and generate a realistically looking environment map for these conditions. It is a hybrid data-driven analytical model based on a modified state-of-the-art GAN architecture, which is trained on matching pairs of physically-accurate clear sky radiance and HDR fisheye photographs of clouds. We demonstrate our results on renders of outdoor scenes under varying time, date, and cloud covers.
Název v anglickém jazyce
SkyGAN: Towards Realistic Cloud Imagery for Image Based Lighting
Popis výsledku anglicky
Achieving photorealism when rendering virtual scenes in movies or architecture visualizations often depends on providing a realistic illumination and background. Typically, spherical environment maps serve both as a natural light source from the Sun and the sky, and as a background with clouds and a horizon. In practice, the input is either a static high-resolution HDR photograph manually captured on location in real conditions, or an analytical clear sky model that is dynamic, but cannot model clouds. Our approach bridges these two limited paradigms: a user can control the sun position and cloud coverage ratio, and generate a realistically looking environment map for these conditions. It is a hybrid data-driven analytical model based on a modified state-of-the-art GAN architecture, which is trained on matching pairs of physically-accurate clear sky radiance and HDR fisheye photographs of clouds. We demonstrate our results on renders of outdoor scenes under varying time, date, and cloud covers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016935" target="_blank" >EF19_073/0016935: Grantová schémata na UK</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Rendering 2022 - Symposium Track
ISBN
978-3-03868-187-8
ISSN
1727-3463
e-ISSN
—
Počet stran výsledku
10
Strana od-do
13-22
Název nakladatele
The Eurographics Association
Místo vydání
Goslar, Germany
Místo konání akce
Prague
Datum konání akce
4. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—