Tracing real-valued reference rays in anisotropic viscoelastic media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452103" target="_blank" >RIV/00216208:11320/22:10452103 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KErrzdo2_5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KErrzdo2_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11200-022-0906-6" target="_blank" >10.1007/s11200-022-0906-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tracing real-valued reference rays in anisotropic viscoelastic media
Popis výsledku v původním jazyce
The eikonal equation in an attenuating medium has the form of a complex-valued Hamilton-Jacobi equation and must be solved in terms of the complex-valued travel time. A very suitable approximate method for calculating the complex-valued travel time right in real space is represented by the perturbation from the reference travel time calculated along the real-valued reference rays to the complex-valued travel time defined by the complex-valued Hamilton-Jacobi equation. The real-valued reference rays are calculated using the reference Hamiltonian function. The reference Hamiltonian function is constructed using the complex-valued Hamiltonian function corresponding to a given complex-valued Hamilton-Jacobi equation. The ray tracing equations and the corresponding equations of geodesic deviation are often formulated in terms of the eigenvectors of the Christoffel matrix. Unfortunately, a complex-valued Christoffel matrix need not have all three eigenvectors at an S-wave singularity. We thus formulate the ray tracing equations and the corresponding equations of geodesic deviation using the eigenvalues of a complex-valued Christoffel matrix, without the eigenvectors of the Christoffel matrix. The resulting equations for the real-valued reference P-wave rays and the real-valued reference common S-wave rays are applicable everywhere, including S-wave singularities.
Název v anglickém jazyce
Tracing real-valued reference rays in anisotropic viscoelastic media
Popis výsledku anglicky
The eikonal equation in an attenuating medium has the form of a complex-valued Hamilton-Jacobi equation and must be solved in terms of the complex-valued travel time. A very suitable approximate method for calculating the complex-valued travel time right in real space is represented by the perturbation from the reference travel time calculated along the real-valued reference rays to the complex-valued travel time defined by the complex-valued Hamilton-Jacobi equation. The real-valued reference rays are calculated using the reference Hamiltonian function. The reference Hamiltonian function is constructed using the complex-valued Hamiltonian function corresponding to a given complex-valued Hamilton-Jacobi equation. The ray tracing equations and the corresponding equations of geodesic deviation are often formulated in terms of the eigenvectors of the Christoffel matrix. Unfortunately, a complex-valued Christoffel matrix need not have all three eigenvectors at an S-wave singularity. We thus formulate the ray tracing equations and the corresponding equations of geodesic deviation using the eigenvalues of a complex-valued Christoffel matrix, without the eigenvectors of the Christoffel matrix. The resulting equations for the real-valued reference P-wave rays and the real-valued reference common S-wave rays are applicable everywhere, including S-wave singularities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-06887S" target="_blank" >GA20-06887S: Seismické vlny v nehomogenních anizotropních viskoelastických prostředích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Geophysica et Geodaetica
ISSN
0039-3169
e-ISSN
1573-1626
Svazek periodika
66
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
124-144
Kód UT WoS článku
000883430500003
EID výsledku v databázi Scopus
2-s2.0-85141995162