Coherent propagation of vortex rings at extremely high Reynolds numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452857" target="_blank" >RIV/00216208:11320/22:10452857 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2H4vervg5p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2H4vervg5p</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jfm.2022.972" target="_blank" >10.1017/jfm.2022.972</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coherent propagation of vortex rings at extremely high Reynolds numbers
Popis výsledku v původním jazyce
We take advantage of the extremely small kinematic viscosity of superfluid 4He to investigate the propagation of macroscopic vortex rings at Reynolds numbers between 2 x 10(4) and 4 x 10(6). These inhomogeneous flow structures are thermally generated by releasing short power pulses into a small volume of liquid, open to the surrounding bath through a vertical tube 2 mm in diameter. We study specifically the ring behaviour between 1.30 and 1.80 K using the flow visualization and second sound attenuation techniques. From the obtained data sets, containing more than 2600 realizations, we find that the rings remain well-defined in space and time for distances up to at least 40 tube diameters, and that their circulation depends significantly on the travelled distance, in a way similar to that observed for turbulent vortex rings propagating in Newtonian fluids. Additionally, the ring velocity and circulation appear to be influenced solely by a single, experimentally accessible parameter, combining the liquid temperature with the magnitude and duration of the power pulse. Overall, our results support the view that macroscopic vortex rings moving in superfluid He-4 closely resemble their Newtonian analogues, at least in the absence of significant thermal effects and at sufficiently large flow scales.
Název v anglickém jazyce
Coherent propagation of vortex rings at extremely high Reynolds numbers
Popis výsledku anglicky
We take advantage of the extremely small kinematic viscosity of superfluid 4He to investigate the propagation of macroscopic vortex rings at Reynolds numbers between 2 x 10(4) and 4 x 10(6). These inhomogeneous flow structures are thermally generated by releasing short power pulses into a small volume of liquid, open to the surrounding bath through a vertical tube 2 mm in diameter. We study specifically the ring behaviour between 1.30 and 1.80 K using the flow visualization and second sound attenuation techniques. From the obtained data sets, containing more than 2600 realizations, we find that the rings remain well-defined in space and time for distances up to at least 40 tube diameters, and that their circulation depends significantly on the travelled distance, in a way similar to that observed for turbulent vortex rings propagating in Newtonian fluids. Additionally, the ring velocity and circulation appear to be influenced solely by a single, experimentally accessible parameter, combining the liquid temperature with the magnitude and duration of the power pulse. Overall, our results support the view that macroscopic vortex rings moving in superfluid He-4 closely resemble their Newtonian analogues, at least in the absence of significant thermal effects and at sufficiently large flow scales.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-00939S" target="_blank" >GA19-00939S: Dynamika velkých vírů v kvantové turbulenci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Fluid Mechanics
ISSN
0022-1120
e-ISSN
1469-7645
Svazek periodika
953
Číslo periodika v rámci svazku
9 December 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
A28
Kód UT WoS článku
000895808700001
EID výsledku v databázi Scopus
2-s2.0-85143893254