Integer programming in parameterized complexity: Five miniatures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453167" target="_blank" >RIV/00216208:11320/22:10453167 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11620/22:10453167 RIV/68407700:21240/22:00343692
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=T5-dd7eCd2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=T5-dd7eCd2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disopt.2020.100596" target="_blank" >10.1016/j.disopt.2020.100596</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integer programming in parameterized complexity: Five miniatures
Popis výsledku v původním jazyce
Powerful results from the theory of integer programming have recently led to substantial advances in parameterized complexity. However, our perception is that, except for Lenstra's algorithm for solving integer linear programming in fixed dimension, there is still little understanding in the parameterized complexity community of the strengths and limitations of the available tools. This is understandable: it is often difficult to infer exact runtimes or even the distinction between FPT and XP algorithms, and some knowledge is simply unwritten folklore in a different community. We wish to make a step in remedying this situation. To that end, we first provide an easy to navigate quick reference guide of integer programming algorithms from the perspective of parameterized complexity. Then, we show their applications in three case studies, obtaining FPT algorithms with runtime f (k)poly(n). We focus on: Modeling: since the algorithmic results follow by applying existing algorithms to new models, we shift the focus from the complexity result to the modeling result, highlighting common patterns and tricks which are used. Optimality program: after giving an FPT algorithm, we are interested in reducing the dependence on the parameter; we show which algorithms and tricks are often useful for speed-ups. Minding the poly(n): reducing f (k) often has the unintended consequence of increasing poly(n); so we highlight the common trade-offs and show how to get the best of both worlds. Specifically, we consider graphs of bounded neighborhood diversity which are in a sense the simplest of dense graphs, and we show several FPT algorithms for Capacitated Dominating Set, Sum Coloring, Max-q-Cut, and certain other coloring problems by modeling them as convex programs in fixed dimension, n-fold integer programs, bounded dual treewidth programs, indefinite quadratic programs in fixed dimension, parametric integer programs in fixed dimension, and 2-stage stochastic integer programs. (C) 2020 TheAuthor(s). Published by Elsevier B.V.
Název v anglickém jazyce
Integer programming in parameterized complexity: Five miniatures
Popis výsledku anglicky
Powerful results from the theory of integer programming have recently led to substantial advances in parameterized complexity. However, our perception is that, except for Lenstra's algorithm for solving integer linear programming in fixed dimension, there is still little understanding in the parameterized complexity community of the strengths and limitations of the available tools. This is understandable: it is often difficult to infer exact runtimes or even the distinction between FPT and XP algorithms, and some knowledge is simply unwritten folklore in a different community. We wish to make a step in remedying this situation. To that end, we first provide an easy to navigate quick reference guide of integer programming algorithms from the perspective of parameterized complexity. Then, we show their applications in three case studies, obtaining FPT algorithms with runtime f (k)poly(n). We focus on: Modeling: since the algorithmic results follow by applying existing algorithms to new models, we shift the focus from the complexity result to the modeling result, highlighting common patterns and tricks which are used. Optimality program: after giving an FPT algorithm, we are interested in reducing the dependence on the parameter; we show which algorithms and tricks are often useful for speed-ups. Minding the poly(n): reducing f (k) often has the unintended consequence of increasing poly(n); so we highlight the common trade-offs and show how to get the best of both worlds. Specifically, we consider graphs of bounded neighborhood diversity which are in a sense the simplest of dense graphs, and we show several FPT algorithms for Capacitated Dominating Set, Sum Coloring, Max-q-Cut, and certain other coloring problems by modeling them as convex programs in fixed dimension, n-fold integer programs, bounded dual treewidth programs, indefinite quadratic programs in fixed dimension, parametric integer programs in fixed dimension, and 2-stage stochastic integer programs. (C) 2020 TheAuthor(s). Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Optimization
ISSN
1572-5286
e-ISSN
1873-636X
Svazek periodika
44
Číslo periodika v rámci svazku
P1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
33
Strana od-do
100596
Kód UT WoS článku
000832713200004
EID výsledku v databázi Scopus
2-s2.0-85088118525