Evaluation of gridded precipitation datasets over Madagascar
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453407" target="_blank" >RIV/00216208:11320/22:10453407 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j69wRKj1bP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j69wRKj1bP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/joc.7628" target="_blank" >10.1002/joc.7628</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of gridded precipitation datasets over Madagascar
Popis výsledku v původním jazyce
Madagascar is among the countries whose agriculture is heavily dependent on rainfall. However, the country lacks accurate and reliable early warning systems for droughts and floods, partly due to insufficient station rainfall data. The purpose of this study is to identify rainfall datasets that can complement observation data by appraising 15 datasets (gauge-based, reanalysis, and satellite estimates). The study compares the temporal and spatial performance of datasets at annual and seasonal scales during 1983-2015. In all the analyses, CHIRPS presents lower biases, so it is chosen as the reference data in the Taylor diagram for the final evaluation analysis. Even though ranking datasets is neither possible nor appropriate since each dataset performs differently throughout each analysis, some datasets show reasonable consistency. This is the case with MSWEP, ERA5, and UDEL. On the other hand, MERRA2, CMAP, and TAMSAT are least preferred for use due to their considerable biases (specifically TAMSAT during the dry season). CRU, PRECL, ERAINT, CFSR, and JRA55 also present some degrees of deficiencies at either annual or seasonal scales. These findings are crucial for any future rainfall analysis over the country in order to minimize inaccuracy in monitoring rainfall.
Název v anglickém jazyce
Evaluation of gridded precipitation datasets over Madagascar
Popis výsledku anglicky
Madagascar is among the countries whose agriculture is heavily dependent on rainfall. However, the country lacks accurate and reliable early warning systems for droughts and floods, partly due to insufficient station rainfall data. The purpose of this study is to identify rainfall datasets that can complement observation data by appraising 15 datasets (gauge-based, reanalysis, and satellite estimates). The study compares the temporal and spatial performance of datasets at annual and seasonal scales during 1983-2015. In all the analyses, CHIRPS presents lower biases, so it is chosen as the reference data in the Taylor diagram for the final evaluation analysis. Even though ranking datasets is neither possible nor appropriate since each dataset performs differently throughout each analysis, some datasets show reasonable consistency. This is the case with MSWEP, ERA5, and UDEL. On the other hand, MERRA2, CMAP, and TAMSAT are least preferred for use due to their considerable biases (specifically TAMSAT during the dry season). CRU, PRECL, ERAINT, CFSR, and JRA55 also present some degrees of deficiencies at either annual or seasonal scales. These findings are crucial for any future rainfall analysis over the country in order to minimize inaccuracy in monitoring rainfall.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Climatology
ISSN
0899-8418
e-ISSN
1097-0088
Svazek periodika
42
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
7028-7046
Kód UT WoS článku
000782149200001
EID výsledku v databázi Scopus
2-s2.0-85127544934