Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of gridded precipitation datasets over Madagascar

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453407" target="_blank" >RIV/00216208:11320/22:10453407 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j69wRKj1bP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j69wRKj1bP</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/joc.7628" target="_blank" >10.1002/joc.7628</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of gridded precipitation datasets over Madagascar

  • Popis výsledku v původním jazyce

    Madagascar is among the countries whose agriculture is heavily dependent on rainfall. However, the country lacks accurate and reliable early warning systems for droughts and floods, partly due to insufficient station rainfall data. The purpose of this study is to identify rainfall datasets that can complement observation data by appraising 15 datasets (gauge-based, reanalysis, and satellite estimates). The study compares the temporal and spatial performance of datasets at annual and seasonal scales during 1983-2015. In all the analyses, CHIRPS presents lower biases, so it is chosen as the reference data in the Taylor diagram for the final evaluation analysis. Even though ranking datasets is neither possible nor appropriate since each dataset performs differently throughout each analysis, some datasets show reasonable consistency. This is the case with MSWEP, ERA5, and UDEL. On the other hand, MERRA2, CMAP, and TAMSAT are least preferred for use due to their considerable biases (specifically TAMSAT during the dry season). CRU, PRECL, ERAINT, CFSR, and JRA55 also present some degrees of deficiencies at either annual or seasonal scales. These findings are crucial for any future rainfall analysis over the country in order to minimize inaccuracy in monitoring rainfall.

  • Název v anglickém jazyce

    Evaluation of gridded precipitation datasets over Madagascar

  • Popis výsledku anglicky

    Madagascar is among the countries whose agriculture is heavily dependent on rainfall. However, the country lacks accurate and reliable early warning systems for droughts and floods, partly due to insufficient station rainfall data. The purpose of this study is to identify rainfall datasets that can complement observation data by appraising 15 datasets (gauge-based, reanalysis, and satellite estimates). The study compares the temporal and spatial performance of datasets at annual and seasonal scales during 1983-2015. In all the analyses, CHIRPS presents lower biases, so it is chosen as the reference data in the Taylor diagram for the final evaluation analysis. Even though ranking datasets is neither possible nor appropriate since each dataset performs differently throughout each analysis, some datasets show reasonable consistency. This is the case with MSWEP, ERA5, and UDEL. On the other hand, MERRA2, CMAP, and TAMSAT are least preferred for use due to their considerable biases (specifically TAMSAT during the dry season). CRU, PRECL, ERAINT, CFSR, and JRA55 also present some degrees of deficiencies at either annual or seasonal scales. These findings are crucial for any future rainfall analysis over the country in order to minimize inaccuracy in monitoring rainfall.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Climatology

  • ISSN

    0899-8418

  • e-ISSN

    1097-0088

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    7028-7046

  • Kód UT WoS článku

    000782149200001

  • EID výsledku v databázi Scopus

    2-s2.0-85127544934