Terahertz Spin-to-Charge Current Conversion in Stacks of Ferromagnets and the Transition-Metal Dichalcogenide NbSe2
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453836" target="_blank" >RIV/00216208:11320/22:10453836 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XmzT-aGTMt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XmzT-aGTMt</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/admi.202201675" target="_blank" >10.1002/admi.202201675</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Terahertz Spin-to-Charge Current Conversion in Stacks of Ferromagnets and the Transition-Metal Dichalcogenide NbSe2
Popis výsledku v původním jazyce
Transition-metal dichalcogenides (TMDCs) are an aspiring class of materials with unique electronic and optical properties and potential applications in spin-based electronics. Here, terahertz emission spectroscopy is used to study spin-to-charge current conversion (S2C) in the TMDC NbSe2 in ultra-high-vacuum-grown F|NbSe2 thin-film stacks, where F is a layer of ferromagnetic Fe or Ni. Ultrafast laser excitation triggers an ultrafast spin current that is converted into an in-plane charge current and, thus, a measurable THz electromagnetic pulse. The THz signal amplitude as a function of the NbSe2 thickness shows that the measured signals are fully consistent with an ultrafast optically driven injection of an in-plane-polarized spin current into NbSe2. Modeling of the spin-current dynamics reveals that a sizable fraction of the total S2C originates from the bulk of NbSe2 with the opposite, negative sign of the spin Hall angle as compared to Pt. By a quantitative comparison of the emitted THz radiation from F|NbSe2 to F|Pt reference samples and the results of ab initio calculations, it is estimated that the spin Hall angle of NbSe2 for an in-plane polarized spin current lies between -0.2% and -1.1%, while the THz spin-current relaxation length is of the order of a few nanometers.
Název v anglickém jazyce
Terahertz Spin-to-Charge Current Conversion in Stacks of Ferromagnets and the Transition-Metal Dichalcogenide NbSe2
Popis výsledku anglicky
Transition-metal dichalcogenides (TMDCs) are an aspiring class of materials with unique electronic and optical properties and potential applications in spin-based electronics. Here, terahertz emission spectroscopy is used to study spin-to-charge current conversion (S2C) in the TMDC NbSe2 in ultra-high-vacuum-grown F|NbSe2 thin-film stacks, where F is a layer of ferromagnetic Fe or Ni. Ultrafast laser excitation triggers an ultrafast spin current that is converted into an in-plane charge current and, thus, a measurable THz electromagnetic pulse. The THz signal amplitude as a function of the NbSe2 thickness shows that the measured signals are fully consistent with an ultrafast optically driven injection of an in-plane-polarized spin current into NbSe2. Modeling of the spin-current dynamics reveals that a sizable fraction of the total S2C originates from the bulk of NbSe2 with the opposite, negative sign of the spin Hall angle as compared to Pt. By a quantitative comparison of the emitted THz radiation from F|NbSe2 to F|Pt reference samples and the results of ab initio calculations, it is estimated that the spin Hall angle of NbSe2 for an in-plane polarized spin current lies between -0.2% and -1.1%, while the THz spin-current relaxation length is of the order of a few nanometers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials Interfaces [online]
ISSN
2196-7350
e-ISSN
2196-7350
Svazek periodika
9
Číslo periodika v rámci svazku
36
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
2201675
Kód UT WoS článku
000870537300001
EID výsledku v databázi Scopus
2-s2.0-85140103304