Collective excitations in jammed states: ultrafast defect propagation and finite-size scaling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454898" target="_blank" >RIV/00216208:11320/22:10454898 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P.VUC.A9-R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P.VUC.A9-R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/ac8e26" target="_blank" >10.1088/1367-2630/ac8e26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Collective excitations in jammed states: ultrafast defect propagation and finite-size scaling
Popis výsledku v původním jazyce
In crowded systems, particle currents can be mediated by propagating collective excitations which are generated as rare events, are localized, and have a finite lifetime. The theoretical description of such excitations is hampered by the problem of identifying complex many-particle transition states, calculation of their free energies, and the evaluation of propagation mechanisms and velocities. Here we show that these problems can be tackled for a highly jammed system of hard spheres in a periodic potential. We derive generation rates of collective excitations, their anomalously high velocities, and explain the occurrence of an apparent jamming transition and its strong dependence on the system size. The particle currents follow a scaling behavior, where for small systems the current is proportional to the generation rate and for large systems given by the geometric mean of the generation rate and velocity. Our theoretical approach is widely applicable to dense nonequilibrium systems in confined geometries. It provides new perspectives for studying dynamics of collective excitations in experiments.
Název v anglickém jazyce
Collective excitations in jammed states: ultrafast defect propagation and finite-size scaling
Popis výsledku anglicky
In crowded systems, particle currents can be mediated by propagating collective excitations which are generated as rare events, are localized, and have a finite lifetime. The theoretical description of such excitations is hampered by the problem of identifying complex many-particle transition states, calculation of their free energies, and the evaluation of propagation mechanisms and velocities. Here we show that these problems can be tackled for a highly jammed system of hard spheres in a periodic potential. We derive generation rates of collective excitations, their anomalously high velocities, and explain the occurrence of an apparent jamming transition and its strong dependence on the system size. The particle currents follow a scaling behavior, where for small systems the current is proportional to the generation rate and for large systems given by the geometric mean of the generation rate and velocity. Our theoretical approach is widely applicable to dense nonequilibrium systems in confined geometries. It provides new perspectives for studying dynamics of collective excitations in experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-24748J" target="_blank" >GC20-24748J: Vztah kolektivní a jedno-částicové dynamiky v procesech single-file difúze v periodických strukturách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
093020
Kód UT WoS článku
000853990500001
EID výsledku v databázi Scopus
2-s2.0-85138852885