Diffusion coefficient and power spectrum of active particles with a microscopically reversible mechanism of self-propelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454899" target="_blank" >RIV/00216208:11320/22:10454899 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=86_pyvhA-d" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=86_pyvhA-d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0101520" target="_blank" >10.1063/5.0101520</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Diffusion coefficient and power spectrum of active particles with a microscopically reversible mechanism of self-propelling
Popis výsledku v původním jazyce
Catalytically active macromolecules are envisioned as key building blocks in the development of artificial nanomotors. However, theory and experiments report conflicting findings regarding their dynamics. The lack of consensus is mostly caused by the limited understanding of the specifics of self-propulsion mechanisms at the nanoscale. Here, we study a generic model of a self-propelled nanoparticle that does not rely on a particular mechanism. Instead, its main assumption is the fundamental symmetry of microscopic dynamics of chemical reactions: the principle of microscopic reversibility. Significant consequences of this assumption arise if we subject the particle to the action of an external time-periodic force. The particle diffusion coefficient then becomes enhanced compared to the unbiased dynamics. The enhancement can be controlled by the force amplitude and frequency. We also derive the power spectrum of particle trajectories. Among the new effects stemming from the microscopic reversibility are the enhancement of the spectrum at all frequencies and sigmoid-shaped transitions and a peak at characteristic frequencies of rotational diffusion and external forcing. Microscopic reversibility is a generic property of a broad class of chemical reactions. Therefore, we expect that the presented results will motivate new experimental studies aimed at testing our predictions. This could provide new insights into the dynamics of catalytic macromolecules. Published under an exclusive license by AIP Publishing.
Název v anglickém jazyce
Diffusion coefficient and power spectrum of active particles with a microscopically reversible mechanism of self-propelling
Popis výsledku anglicky
Catalytically active macromolecules are envisioned as key building blocks in the development of artificial nanomotors. However, theory and experiments report conflicting findings regarding their dynamics. The lack of consensus is mostly caused by the limited understanding of the specifics of self-propulsion mechanisms at the nanoscale. Here, we study a generic model of a self-propelled nanoparticle that does not rely on a particular mechanism. Instead, its main assumption is the fundamental symmetry of microscopic dynamics of chemical reactions: the principle of microscopic reversibility. Significant consequences of this assumption arise if we subject the particle to the action of an external time-periodic force. The particle diffusion coefficient then becomes enhanced compared to the unbiased dynamics. The enhancement can be controlled by the force amplitude and frequency. We also derive the power spectrum of particle trajectories. Among the new effects stemming from the microscopic reversibility are the enhancement of the spectrum at all frequencies and sigmoid-shaped transitions and a peak at characteristic frequencies of rotational diffusion and external forcing. Microscopic reversibility is a generic property of a broad class of chemical reactions. Therefore, we expect that the presented results will motivate new experimental studies aimed at testing our predictions. This could provide new insights into the dynamics of catalytic macromolecules. Published under an exclusive license by AIP Publishing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-02955J" target="_blank" >GC20-02955J: Dynamika a termodynamika umělých a přírodních aktivních systémů se zpožděním</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
1089-7690
Svazek periodika
157
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
104108
Kód UT WoS článku
000860302100009
EID výsledku v databázi Scopus
2-s2.0-85137258737