Isoscalar giant monopole resonance in Mg-24 and Si-28: Effect of coupling between the isoscalar monopole and quadrupole strength
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455158" target="_blank" >RIV/00216208:11320/22:10455158 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IKe1bVuNMT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IKe1bVuNMT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevC.105.024311" target="_blank" >10.1103/PhysRevC.105.024311</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Isoscalar giant monopole resonance in Mg-24 and Si-28: Effect of coupling between the isoscalar monopole and quadrupole strength
Popis výsledku v původním jazyce
Background: In highly deformed nuclei, there is a noticeable coupling of the isoscalar giant monopole resonance (ISGMR) and the K = 0 component of the isoscalar giant quadrupole resonance (ISGQR), which results in a double peak structure of the isoscalar monopole (IS0) strength (a narrow low-energy deformation-induced peak and a main broad ISGMR part). The energy of the narrow low-lying IS0 peak is sensitive to both the incompressibility modulus K(infinity )and the coupling between IS0 and isoscalar quadrupole (IS2) strength. Purpose: This study aims to investigate the two-peaked structure of the ISGMR in the prolate Mg-24 and oblate Si-28 nuclei and identify among a variety of energy density functionals based on Skyrme parametrizations the one which best describes the experimental data. This will allow for conclusions regarding the nuclear incompressibility. Because of the strong IS0/IS2 coupling, the deformation splitting of the ISGQR will also be analyzed. Methods: The ISGMR was excited in Mg-24 and Si-28 using alpha-particle inelastic scattering measurements acquired with an E-alpha = 196 MeV beam at scattering angles theta(Lab) = 0 degrees and 4 degrees. The K600 magnetic spectrometer at iThemba LABS was used to detect and momentum analyze the inelastically scattered alpha particles. An experimental energy resolution of approximate to 70 keV (FWHM) was attained, revealing fine structure in the excitation-energy region of the ISGMR. The IS0 strength distributions in the nuclei studied were obtained with the difference-of-spectra (DoS) technique. The theoretical comparison is based on the quasiparticle random-phase approximation (QRPA) with a representative set of Skyrme forces. Results: IS0 strength distributions for Mg-24 and Si-28 are extracted and compared to previously published results from experiments with a lower energy resolution. With some exceptions, a reasonable agreement is obtained. The IS0 strength is found to be separated into a narrow structure at about 13-14 MeV in Mg-24, 17-19 MeV in Si-28, and a broad structure at 19-26 MeV in both nuclei. The data are compared with QRPA results. The results of the calculated characteristics of IS0 states demonstrate the strong IS0/IS2 coupling in strongly prolate Mg-24 and oblate Si-28. The narrow IS0 peaks are shown to arise due to the deformation-induced IS0/IS2 coupling and strong collective effects. The cluster features of the narrow IS0 peak at 13.87 MeV in Mg-24 are also discussed. The best description of the IS0 data is obtained using the Skyrme force SkP(delta) with an associated low nuclear incompressibility K-infinity = 202 MeV allowing for both the energy of the peak and integral IS0 strength in Mg-24 and Si-28 to be reproduced. The features of the ISGQR in these nuclei are also investigated. An anomalous deformation splitting of the ISGQR in oblate Si-28 is found. The observed structure of ISGQR in Mg-24 is described. Conclusions: The ISGMR and ISGQR in light deformed nuclei are coupled and thus need to be described simultaneously. Only such a description is relevant and consistent. The deformation-induced narrow IS0 peaks can serve as an additional sensitive measure of the nuclear incompressibility.
Název v anglickém jazyce
Isoscalar giant monopole resonance in Mg-24 and Si-28: Effect of coupling between the isoscalar monopole and quadrupole strength
Popis výsledku anglicky
Background: In highly deformed nuclei, there is a noticeable coupling of the isoscalar giant monopole resonance (ISGMR) and the K = 0 component of the isoscalar giant quadrupole resonance (ISGQR), which results in a double peak structure of the isoscalar monopole (IS0) strength (a narrow low-energy deformation-induced peak and a main broad ISGMR part). The energy of the narrow low-lying IS0 peak is sensitive to both the incompressibility modulus K(infinity )and the coupling between IS0 and isoscalar quadrupole (IS2) strength. Purpose: This study aims to investigate the two-peaked structure of the ISGMR in the prolate Mg-24 and oblate Si-28 nuclei and identify among a variety of energy density functionals based on Skyrme parametrizations the one which best describes the experimental data. This will allow for conclusions regarding the nuclear incompressibility. Because of the strong IS0/IS2 coupling, the deformation splitting of the ISGQR will also be analyzed. Methods: The ISGMR was excited in Mg-24 and Si-28 using alpha-particle inelastic scattering measurements acquired with an E-alpha = 196 MeV beam at scattering angles theta(Lab) = 0 degrees and 4 degrees. The K600 magnetic spectrometer at iThemba LABS was used to detect and momentum analyze the inelastically scattered alpha particles. An experimental energy resolution of approximate to 70 keV (FWHM) was attained, revealing fine structure in the excitation-energy region of the ISGMR. The IS0 strength distributions in the nuclei studied were obtained with the difference-of-spectra (DoS) technique. The theoretical comparison is based on the quasiparticle random-phase approximation (QRPA) with a representative set of Skyrme forces. Results: IS0 strength distributions for Mg-24 and Si-28 are extracted and compared to previously published results from experiments with a lower energy resolution. With some exceptions, a reasonable agreement is obtained. The IS0 strength is found to be separated into a narrow structure at about 13-14 MeV in Mg-24, 17-19 MeV in Si-28, and a broad structure at 19-26 MeV in both nuclei. The data are compared with QRPA results. The results of the calculated characteristics of IS0 states demonstrate the strong IS0/IS2 coupling in strongly prolate Mg-24 and oblate Si-28. The narrow IS0 peaks are shown to arise due to the deformation-induced IS0/IS2 coupling and strong collective effects. The cluster features of the narrow IS0 peak at 13.87 MeV in Mg-24 are also discussed. The best description of the IS0 data is obtained using the Skyrme force SkP(delta) with an associated low nuclear incompressibility K-infinity = 202 MeV allowing for both the energy of the peak and integral IS0 strength in Mg-24 and Si-28 to be reproduced. The features of the ISGQR in these nuclei are also investigated. An anomalous deformation splitting of the ISGQR in oblate Si-28 is found. The observed structure of ISGQR in Mg-24 is described. Conclusions: The ISGMR and ISGQR in light deformed nuclei are coupled and thus need to be described simultaneously. Only such a description is relevant and consistent. The deformation-induced narrow IS0 peaks can serve as an additional sensitive measure of the nuclear incompressibility.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-14048S" target="_blank" >GA19-14048S: Zkoumání nových vlastností jaderných elektromagnetických excitací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review C
ISSN
2469-9985
e-ISSN
2469-9993
Svazek periodika
105
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
024311
Kód UT WoS článku
000761173300002
EID výsledku v databázi Scopus
2-s2.0-85126025439