Split Transition Power Abstraction for Unbounded Safety
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455358" target="_blank" >RIV/00216208:11320/22:10455358 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42" target="_blank" >https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.34727/2022/isbn.978-3-85448-053-2_42" target="_blank" >10.34727/2022/isbn.978-3-85448-053-2_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Split Transition Power Abstraction for Unbounded Safety
Popis výsledku v původním jazyce
Transition Power Abstraction (TPA) is a recent symbolic model checking approach that leverages Craig interpolation to create a sequence of symbolic abstractions for transition paths that double in length with each new element. This doubling abstraction allows the approach to find bugs that require long executions much faster than traditional approaches that unfold transitions one at a time, but its ability to prove system safety is limited. This paper proposes a novel instantiation of the TPA approach capable of proving unbounded safety efficiently while preserving the unique capability to detect deep counterexamples. The idea is to split the transition over-approximations in two complementary parts. One part focuses only on reachability in fixed number of steps, the second part complements it by summarizing all shorter paths. The resulting split abstractions are suitable for discovering safe transition invariants, making the SPLIT-TPA approach much more efficient in proving safety and even improving the counterexample detection. The approach is implemented in the constrained Horn clause solver GOLEM and our experimental comparison against state-of-the-art solvers shows it to be both competitive and complementary.
Název v anglickém jazyce
Split Transition Power Abstraction for Unbounded Safety
Popis výsledku anglicky
Transition Power Abstraction (TPA) is a recent symbolic model checking approach that leverages Craig interpolation to create a sequence of symbolic abstractions for transition paths that double in length with each new element. This doubling abstraction allows the approach to find bugs that require long executions much faster than traditional approaches that unfold transitions one at a time, but its ability to prove system safety is limited. This paper proposes a novel instantiation of the TPA approach capable of proving unbounded safety efficiently while preserving the unique capability to detect deep counterexamples. The idea is to split the transition over-approximations in two complementary parts. One part focuses only on reachability in fixed number of steps, the second part complements it by summarizing all shorter paths. The resulting split abstractions are suitable for discovering safe transition invariants, making the SPLIT-TPA approach much more efficient in proving safety and even improving the counterexample detection. The approach is implemented in the constrained Horn clause solver GOLEM and our experimental comparison against state-of-the-art solvers shows it to be both competitive and complementary.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-07487S" target="_blank" >GA20-07487S: Škálovatelné techniky pro analýzu komplexních vlastností počítačových systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022
ISBN
978-3-85448-053-2
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
349-358
Název nakladatele
TU Wien Academic Press
Místo vydání
Vídeň
Místo konání akce
Trento, Italy
Datum konání akce
17. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—