Defect-Engineered Hydroxylated Mesoporous Spinel Oxides as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455410" target="_blank" >RIV/00216208:11320/22:10455410 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QZc4JjZ9K2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QZc4JjZ9K2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.2c00254" target="_blank" >10.1021/acsami.2c00254</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Defect-Engineered Hydroxylated Mesoporous Spinel Oxides as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions
Popis výsledku v původním jazyce
In this work, defect-rich ordered mesoporous spinel oxides, including CoCo2O4, NiCo2O4, and ZnCo2O4, were developed as bifunctional electrocatalysts toward oxygen reduction and evolution reactions (ORR and OER, respectively). The materials are synthesized via nanocasting and modified by chemical treatment with 0.1 M NaBH4 solution to enhance the defect concentration. The synthesized samples have metal and oxygen divacancies (V-Co + V-O) as the primary defect sites, as indicated by positron annihilation lifetime spectroscopy (PALS). Cation substitution in the spinel structure induces a higher number of oxygen vacancies. The increased number of surface defects and the synergistic effect between two incorporated metals provide a high activity in both the OER and ORR in the case of NiCo2O4 and ZnCo2O4. Especially, ZnCo2O4 exhibits the highest OER/ORR activity. The defect engineering with 0.1 M NaBH4 solution results in a metal-hydroxylated surface (M-OH) and enhanced the catalytic activity for the post-treated metal oxides in the ORR and OER. This fundamental investigation of the defective structure of the mixed metal oxides offers some useful insights into further development of highly active electrocatalysts through defect engineering methods.
Název v anglickém jazyce
Defect-Engineered Hydroxylated Mesoporous Spinel Oxides as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions
Popis výsledku anglicky
In this work, defect-rich ordered mesoporous spinel oxides, including CoCo2O4, NiCo2O4, and ZnCo2O4, were developed as bifunctional electrocatalysts toward oxygen reduction and evolution reactions (ORR and OER, respectively). The materials are synthesized via nanocasting and modified by chemical treatment with 0.1 M NaBH4 solution to enhance the defect concentration. The synthesized samples have metal and oxygen divacancies (V-Co + V-O) as the primary defect sites, as indicated by positron annihilation lifetime spectroscopy (PALS). Cation substitution in the spinel structure induces a higher number of oxygen vacancies. The increased number of surface defects and the synergistic effect between two incorporated metals provide a high activity in both the OER and ORR in the case of NiCo2O4 and ZnCo2O4. Especially, ZnCo2O4 exhibits the highest OER/ORR activity. The defect engineering with 0.1 M NaBH4 solution results in a metal-hydroxylated surface (M-OH) and enhanced the catalytic activity for the post-treated metal oxides in the ORR and OER. This fundamental investigation of the defective structure of the mixed metal oxides offers some useful insights into further development of highly active electrocatalysts through defect engineering methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Materials & Interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
14
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
23307-23321
Kód UT WoS článku
000821777200054
EID výsledku v databázi Scopus
2-s2.0-85131136351