High-multiplicity N-fold IP via configuration LP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455473" target="_blank" >RIV/00216208:11320/22:10455473 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/23:00366258
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RXMK4uDhLI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RXMK4uDhLI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-022-01882-9" target="_blank" >10.1007/s10107-022-01882-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-multiplicity N-fold IP via configuration LP
Popis výsledku v původním jazyce
N-fold integer programs (IPs) form an important class of block-structured IPs for which increasingly fast algorithms have recently been developed and successfully applied. We study high-multiplicityN-fold IPs, which encode IPs succinctly by presenting a description of each block type and a vector of block multiplicities. Our goal is to design algorithms which solve N-fold IPs in time polynomial in the size of the succinct encoding, which may be significantly smaller than the size of the explicit (non-succinct) instance. We present the first fixed-parameter algorithm for high-multiplicity N-fold IPs, which even works for convex objectives. Our key contribution is a novel proximity theorem which relates fractional and integer optima of the Configuration LP, a fundamental notion by Gilmore and Gomory [Oper. Res., 1961] which we generalize. Our algorithm for N-fold IP is faster than previous algorithms whenever the number of blocks is much larger than the number of block types, such as in N-fold IP models for various scheduling problems.
Název v anglickém jazyce
High-multiplicity N-fold IP via configuration LP
Popis výsledku anglicky
N-fold integer programs (IPs) form an important class of block-structured IPs for which increasingly fast algorithms have recently been developed and successfully applied. We study high-multiplicityN-fold IPs, which encode IPs succinctly by presenting a description of each block type and a vector of block multiplicities. Our goal is to design algorithms which solve N-fold IPs in time polynomial in the size of the succinct encoding, which may be significantly smaller than the size of the explicit (non-succinct) instance. We present the first fixed-parameter algorithm for high-multiplicity N-fold IPs, which even works for convex objectives. Our key contribution is a novel proximity theorem which relates fractional and integer optima of the Configuration LP, a fundamental notion by Gilmore and Gomory [Oper. Res., 1961] which we generalize. Our algorithm for N-fold IP is faster than previous algorithms whenever the number of blocks is much larger than the number of block types, such as in N-fold IP models for various scheduling problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Programming, Series A
ISSN
0025-5610
e-ISSN
—
Svazek periodika
2023
Číslo periodika v rámci svazku
200(1)
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
29
Strana od-do
199-227
Kód UT WoS článku
000855987900002
EID výsledku v databázi Scopus
2-s2.0-85138524421