Non-isothermal viscoelastic flows with conservation laws and relaxation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455586" target="_blank" >RIV/00216208:11320/22:10455586 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~O6j_CTbuJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~O6j_CTbuJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219891622500096" target="_blank" >10.1142/S0219891622500096</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-isothermal viscoelastic flows with conservation laws and relaxation
Popis výsledku v původním jazyce
We propose a system of conservation laws with relaxation source terms (i.e. balance laws) for non-isothermal viscoelastic flows of Maxwell fluids. The system is an extension of the polyconvex elastodynamics of hyperelastic bodies using additional structure variables. It is obtained by writing the Helmholtz free energy as the sum of a volumetric energy density (function of the determinant of the deformation gradient detF and the temperature theta like the standard perfect-gas law or Noble-Abel stiffened-gas law) plus a polyconvex strain energy density function of F, theta and of symmetric positive-definite structure tensors that relax at a characteristic time scale. One feature of our model is that it unifies various ideal materials ranging from hyperelastic solids to perfect fluids, encompassing fluids with memory like Maxwell fluids. We establish a strictly convex mathematical entropy to show that the system is symmetric-hyperbolic. Another feature of the proposed model is therefore the short-time existence and uniqueness of smooth solutions, which define genuinely causal viscoelastic flows with waves propagating at finite speed. In heat-conductors, we complement the system by a Maxwell-Cattaneo equation for an energy-flux variable. The system is still symmetric-hyperbolic, and smooth evolutions with finite-speed waves remain well-defined.
Název v anglickém jazyce
Non-isothermal viscoelastic flows with conservation laws and relaxation
Popis výsledku anglicky
We propose a system of conservation laws with relaxation source terms (i.e. balance laws) for non-isothermal viscoelastic flows of Maxwell fluids. The system is an extension of the polyconvex elastodynamics of hyperelastic bodies using additional structure variables. It is obtained by writing the Helmholtz free energy as the sum of a volumetric energy density (function of the determinant of the deformation gradient detF and the temperature theta like the standard perfect-gas law or Noble-Abel stiffened-gas law) plus a polyconvex strain energy density function of F, theta and of symmetric positive-definite structure tensors that relax at a characteristic time scale. One feature of our model is that it unifies various ideal materials ranging from hyperelastic solids to perfect fluids, encompassing fluids with memory like Maxwell fluids. We establish a strictly convex mathematical entropy to show that the system is symmetric-hyperbolic. Another feature of the proposed model is therefore the short-time existence and uniqueness of smooth solutions, which define genuinely causal viscoelastic flows with waves propagating at finite speed. In heat-conductors, we complement the system by a Maxwell-Cattaneo equation for an energy-flux variable. The system is still symmetric-hyperbolic, and smooth evolutions with finite-speed waves remain well-defined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hyperbolic Differential Equations
ISSN
0219-8916
e-ISSN
1793-6993
Svazek periodika
19
Číslo periodika v rámci svazku
02
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
337-364
Kód UT WoS článku
000840562700005
EID výsledku v databázi Scopus
—