Constructing a Lexical Resource of Russian Derivational Morphology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457036" target="_blank" >RIV/00216208:11320/22:10457036 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.298.pdf" target="_blank" >http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.298.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Constructing a Lexical Resource of Russian Derivational Morphology
Popis výsledku v původním jazyce
Words of any language are to some extent related thought the ways they are formed. For instance, the verb exempl-ify and the noun example-s are both based on the word example, but the verb is derived from it, while the noun is inflected. In Natural Language Processing of Russian, the inflection is satisfactorily processed; however, there are only a few machine-tractable resources that capture derivations even though Russian has both of these morphological processes very rich. Therefore, we devote this paper to improving one of the methods of constructing such resources and to the application of the method to a Russian lexicon, which results in the creation of the largest lexical resource of Russian derivational relations. The resulting database dubbed DeriNet.RU includes more than 300 thousand lexemes connected with more than 164 thousand binary derivational relations. To create such data, we combined the existing machine-learning methods that we improved to manage this goal. The whole approach is eva
Název v anglickém jazyce
Constructing a Lexical Resource of Russian Derivational Morphology
Popis výsledku anglicky
Words of any language are to some extent related thought the ways they are formed. For instance, the verb exempl-ify and the noun example-s are both based on the word example, but the verb is derived from it, while the noun is inflected. In Natural Language Processing of Russian, the inflection is satisfactorily processed; however, there are only a few machine-tractable resources that capture derivations even though Russian has both of these morphological processes very rich. Therefore, we devote this paper to improving one of the methods of constructing such resources and to the application of the method to a Russian lexicon, which results in the creation of the largest lexical resource of Russian derivational relations. The resulting database dubbed DeriNet.RU includes more than 300 thousand lexemes connected with more than 164 thousand binary derivational relations. To create such data, we combined the existing machine-learning methods that we improved to manage this goal. The whole approach is eva
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022)
ISBN
979-10-95546-72-6
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
2788-2797
Název nakladatele
European Language Resources Association
Místo vydání
Marseille, France
Místo konání akce
Marseille, France
Datum konání akce
20. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—