Training Dataset and Dictionary Sizes Matter in BERT Models: The Case of Baltic Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A4SGWFY9I" target="_blank" >RIV/00216208:11320/22:4SGWFY9I - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/357201955_Training_dataset_and_dictionary_sizes_matter_in_BERT_models_the_case_of_Baltic_languages" target="_blank" >https://www.researchgate.net/publication/357201955_Training_dataset_and_dictionary_sizes_matter_in_BERT_models_the_case_of_Baltic_languages</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16500-9_14" target="_blank" >10.1007/978-3-031-16500-9_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Training Dataset and Dictionary Sizes Matter in BERT Models: The Case of Baltic Languages
Popis výsledku v původním jazyce
Large pretrained masked language models have become state-of-the-art solutions for many NLP problems. While studies have shown that monolingual models produce better results than multilingual models, the training datasets must be sufficiently large. We trained a trilingual LitLat BERT-like model for Lithuanian, Latvian, and English, and a monolingual Est-RoBERTa model for Estonian. We evaluate their performance on four downstream tasks: named entity recognition, dependency parsing, part-of-speech tagging, and word analogy. To analyze the importance of focusing on a single language and the importance of a large training set, we compare created models with existing monolingual and multilingual BERT models for Estonian, Latvian, and Lithuanian. The results show that the newly created LitLat BERT and Est-RoBERTa models improve the results of existing models on all tested tasks in most situations.
Název v anglickém jazyce
Training Dataset and Dictionary Sizes Matter in BERT Models: The Case of Baltic Languages
Popis výsledku anglicky
Large pretrained masked language models have become state-of-the-art solutions for many NLP problems. While studies have shown that monolingual models produce better results than multilingual models, the training datasets must be sufficiently large. We trained a trilingual LitLat BERT-like model for Lithuanian, Latvian, and English, and a monolingual Est-RoBERTa model for Estonian. We evaluate their performance on four downstream tasks: named entity recognition, dependency parsing, part-of-speech tagging, and word analogy. To analyze the importance of focusing on a single language and the importance of a large training set, we compare created models with existing monolingual and multilingual BERT models for Estonian, Latvian, and Lithuanian. The results show that the newly created LitLat BERT and Est-RoBERTa models improve the results of existing models on all tested tasks in most situations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Analysis of Images, Social Networks and Texts
ISBN
978-3-031-16500-9
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
162-172
Název nakladatele
Springer International Publishing
Místo vydání
—
Místo konání akce
Cham
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—