Classification of Poverty Condition Using Natural Language Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A88HHHD7W" target="_blank" >RIV/00216208:11320/22:88HHHD7W - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11205-022-02883-z" target="_blank" >https://doi.org/10.1007/s11205-022-02883-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11205-022-02883-z" target="_blank" >10.1007/s11205-022-02883-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of Poverty Condition Using Natural Language Processing
Popis výsledku v původním jazyce
This work introduces a methodology to classify between poor and extremely poor people through Natural Language Processing. The approach serves as a baseline to understand and classify poverty through the people’s discourses using machine learning algorithms. Based on classical and modern word vector representations we propose two strategies for document level representations: (1) document-level features based on the concatenation of descriptive statistics and (2) Gaussian mixture models. Three classification methods are systematically evaluated: Support Vector Machines, Random Forest, and Extreme Gradient Boosting. The fourth best experiments yielded around 55% of accuracy, while the embeddings based on GloVe word vectors yielded a sensitivity of 79.6% which could be of great interest for the public policy makers to accurately find people who need to be prioritized in social programs.
Název v anglickém jazyce
Classification of Poverty Condition Using Natural Language Processing
Popis výsledku anglicky
This work introduces a methodology to classify between poor and extremely poor people through Natural Language Processing. The approach serves as a baseline to understand and classify poverty through the people’s discourses using machine learning algorithms. Based on classical and modern word vector representations we propose two strategies for document level representations: (1) document-level features based on the concatenation of descriptive statistics and (2) Gaussian mixture models. Three classification methods are systematically evaluated: Support Vector Machines, Random Forest, and Extreme Gradient Boosting. The fourth best experiments yielded around 55% of accuracy, while the embeddings based on GloVe word vectors yielded a sensitivity of 79.6% which could be of great interest for the public policy makers to accurately find people who need to be prioritized in social programs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Social Indicators Research [online]
ISSN
1573-0921
e-ISSN
1573-0921
Svazek periodika
162
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
23
Strana od-do
1413-1435
Kód UT WoS článku
000752794700001
EID výsledku v databázi Scopus
2-s2.0-85124366997