Language Model Priming for Cross-Lingual Event Extraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ACSBT4H3W" target="_blank" >RIV/00216208:11320/22:CSBT4H3W - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/21307" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/21307</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v36i10.21307" target="_blank" >10.1609/aaai.v36i10.21307</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Language Model Priming for Cross-Lingual Event Extraction
Popis výsledku v původním jazyce
We present a novel, language-agnostic approach to "priming" language models for the task of event extraction, providing particularly effective performance in low-resource and zero-shot cross-lingual settings. With priming, we augment the input to the transformer stack's language model differently depending on the question(s) being asked of the model at runtime. For instance, if the model is being asked to identify arguments for the trigger "protested", we will provide that trigger as part of the input to the language model, allowing it to produce different representations for candidate arguments than when it is asked about arguments for the trigger "arrest" elsewhere in the same sentence. We show that by enabling the language model to better compensate for the deficits of sparse and noisy training data, our approach improves both trigger and argument detection and classification significantly over the state of the art in a zero-shot cross-lingual setting.
Název v anglickém jazyce
Language Model Priming for Cross-Lingual Event Extraction
Popis výsledku anglicky
We present a novel, language-agnostic approach to "priming" language models for the task of event extraction, providing particularly effective performance in low-resource and zero-shot cross-lingual settings. With priming, we augment the input to the transformer stack's language model differently depending on the question(s) being asked of the model at runtime. For instance, if the model is being asked to identify arguments for the trigger "protested", we will provide that trigger as part of the input to the language model, allowing it to produce different representations for candidate arguments than when it is asked about arguments for the trigger "arrest" elsewhere in the same sentence. We show that by enabling the language model to better compensate for the deficits of sparse and noisy training data, our approach improves both trigger and argument detection and classification significantly over the state of the art in a zero-shot cross-lingual setting.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN
2159-5399
e-ISSN
2571-0966
Svazek periodika
36
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
10627-10635
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—