Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Do Not Fire the Linguist: Grammatical Profiles Help Language Models Detect Semantic Change

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AD9D7L695" target="_blank" >RIV/00216208:11320/22:D9D7L695 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.lchange-1.6" target="_blank" >https://aclanthology.org/2022.lchange-1.6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.lchange-1.6" target="_blank" >10.18653/v1/2022.lchange-1.6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Do Not Fire the Linguist: Grammatical Profiles Help Language Models Detect Semantic Change

  • Popis výsledku v původním jazyce

    Morphological and syntactic changes in word usage — as captured, e.g., by grammatical profiles — have been shown to be good predictors of a word's meaning change. In this work, we explore whether large pre-trained contextualised language models, a common tool for lexical semantic change detection, are sensitive to such morphosyntactic changes. To this end, we first compare the performance of grammatical profiles against that of a multilingual neural language model (XLM-R) on 10 datasets, covering 7 languages, and then combine the two approaches in ensembles to assess their complementarity. Our results show that ensembling grammatical profiles with XLM-R improves semantic change detection performance for most datasets and languages. This indicates that language models do not fully cover the fine-grained morphological and syntactic signals that are explicitly represented in grammatical profiles. An interesting exception are the test sets where the time spans under analysis are much longer than the time gap between them (for example, century-long spans with a one-year gap between them). Morphosyntactic change is slow so grammatical profiles do not detect in such cases. In contrast, language models, thanks to their access to lexical information, are able to detect fast topical changes.

  • Název v anglickém jazyce

    Do Not Fire the Linguist: Grammatical Profiles Help Language Models Detect Semantic Change

  • Popis výsledku anglicky

    Morphological and syntactic changes in word usage — as captured, e.g., by grammatical profiles — have been shown to be good predictors of a word's meaning change. In this work, we explore whether large pre-trained contextualised language models, a common tool for lexical semantic change detection, are sensitive to such morphosyntactic changes. To this end, we first compare the performance of grammatical profiles against that of a multilingual neural language model (XLM-R) on 10 datasets, covering 7 languages, and then combine the two approaches in ensembles to assess their complementarity. Our results show that ensembling grammatical profiles with XLM-R improves semantic change detection performance for most datasets and languages. This indicates that language models do not fully cover the fine-grained morphological and syntactic signals that are explicitly represented in grammatical profiles. An interesting exception are the test sets where the time spans under analysis are much longer than the time gap between them (for example, century-long spans with a one-year gap between them). Morphosyntactic change is slow so grammatical profiles do not detect in such cases. In contrast, language models, thanks to their access to lexical information, are able to detect fast topical changes.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change

  • ISBN

    978-1-955917-42-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

    54-67

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

  • Místo konání akce

    Dublin, Ireland

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku