Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-word units (and tokenization more generally): a multi-dimensional and largely information-theoretic approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3APB6DUZ9M" target="_blank" >RIV/00216208:11320/22:PB6DUZ9M - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.openedition.org/lexis/6231" target="_blank" >https://journals.openedition.org/lexis/6231</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4000/lexis.6231" target="_blank" >10.4000/lexis.6231</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-word units (and tokenization more generally): a multi-dimensional and largely information-theoretic approach

  • Popis výsledku v původním jazyce

    It has been argued that most of corpus linguistics involves one of four fundamental methods: frequency lists, dispersion, collocation, and concordancing. All these presuppose (if only implicitly) the definition of a unit: the element whose frequency in a corpus, in corpus parts, or around a search word are counted (or quantified in other ways). Usually and with most corpus-processing tools, a unit is an orthographic word. However, it is obvious that this is a simplifying assumption borne out of convenience: clearly, it seems more intuitive to consider because of or in spite of as one unit each rather than two or three. Some work in computational linguistics has developed multi-word unit (MWU) identification algorithms, which typically involve co-occurrence token frequencies and association measures (AMs), but these have not become widespread in corpus-linguistic practice despite the fact that recognizing MWUs like the above will have a profound impact on just about all corpus statistics that involve (simplistic notions of) words/units. In this programmatic proof-of-concept paper, I introduce and exemplify an algorithm to identify MWUs that goes beyond frequency and bidirectional association by also involving several well-known but underutilized dimensions of corpus-linguistic information: frequency: how often does a potential unit (like in_spite_of) occur?; dispersion: how widespread is the use of a potential unit?; association: how strongly attracted are the parts of a potential unit?; entropy: how variable is each slot in a potential unit? The proposed algorithm can use all these dimensions and weight them differently. I will (i) present the algorithm in detail, (ii) exemplify its application to the Brown corpus, (iii) discuss its results on the basis of several kinds of MWUs it returns, and (iv) discuss next analytical steps.

  • Název v anglickém jazyce

    Multi-word units (and tokenization more generally): a multi-dimensional and largely information-theoretic approach

  • Popis výsledku anglicky

    It has been argued that most of corpus linguistics involves one of four fundamental methods: frequency lists, dispersion, collocation, and concordancing. All these presuppose (if only implicitly) the definition of a unit: the element whose frequency in a corpus, in corpus parts, or around a search word are counted (or quantified in other ways). Usually and with most corpus-processing tools, a unit is an orthographic word. However, it is obvious that this is a simplifying assumption borne out of convenience: clearly, it seems more intuitive to consider because of or in spite of as one unit each rather than two or three. Some work in computational linguistics has developed multi-word unit (MWU) identification algorithms, which typically involve co-occurrence token frequencies and association measures (AMs), but these have not become widespread in corpus-linguistic practice despite the fact that recognizing MWUs like the above will have a profound impact on just about all corpus statistics that involve (simplistic notions of) words/units. In this programmatic proof-of-concept paper, I introduce and exemplify an algorithm to identify MWUs that goes beyond frequency and bidirectional association by also involving several well-known but underutilized dimensions of corpus-linguistic information: frequency: how often does a potential unit (like in_spite_of) occur?; dispersion: how widespread is the use of a potential unit?; association: how strongly attracted are the parts of a potential unit?; entropy: how variable is each slot in a potential unit? The proposed algorithm can use all these dimensions and weight them differently. I will (i) present the algorithm in detail, (ii) exemplify its application to the Brown corpus, (iii) discuss its results on the basis of several kinds of MWUs it returns, and (iv) discuss next analytical steps.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lexis - Journal in English Lexicology [online]

  • ISSN

    1951-6215

  • e-ISSN

    1951-6215

  • Svazek periodika

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    23

  • Strana od-do

    1-23

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85128430203