Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Public’s Mental Health Monitoring via Sentimental Analysis of Financial Text Using Machine Learning Techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3APICQN9HK" target="_blank" >RIV/00216208:11320/22:PICQN9HK - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/1660-4601/19/15/9695" target="_blank" >https://www.mdpi.com/1660-4601/19/15/9695</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijerph19159695" target="_blank" >10.3390/ijerph19159695</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Public’s Mental Health Monitoring via Sentimental Analysis of Financial Text Using Machine Learning Techniques

  • Popis výsledku v původním jazyce

    Public feelings and reactions associated with finance are gaining significant importance as they help individuals, public health, financial and non-financial institutions, and the government understand mental health, the impact of policies, and counter-response. Every individual sentiment linked with a financial text can be categorized, whether it is a headline or the detailed content published in a newspaper. The Guardian newspaper is considered one of the most famous and the biggest websites for digital media on the internet. Moreover, it can be one of the vital platforms for tracking the public’s mental health and feelings via sentimental analysis of news headlines and detailed content related to finance. One of the key purposes of this study is the public’s mental health tracking via the sentimental analysis of financial text news primarily published on digital media to identify the overall mental health of the public and the impact of national or international financial policies. A dataset was collected using The Guardian application programming interface and processed using the support vector machine, AdaBoost, and single layer convolutional neural network. Among all identified techniques, the single layer convolutional neural network with a classification accuracy of 0.939 is considered the best during the training and testing phases as it produced efficient performance and effective results compared to other techniques, such as support vector machine and AdaBoost with associated classification accuracies 0.677 and 0.761, respectively. The findings of this research would also benefit public health, as well as financial and non-financial institutions.

  • Název v anglickém jazyce

    Public’s Mental Health Monitoring via Sentimental Analysis of Financial Text Using Machine Learning Techniques

  • Popis výsledku anglicky

    Public feelings and reactions associated with finance are gaining significant importance as they help individuals, public health, financial and non-financial institutions, and the government understand mental health, the impact of policies, and counter-response. Every individual sentiment linked with a financial text can be categorized, whether it is a headline or the detailed content published in a newspaper. The Guardian newspaper is considered one of the most famous and the biggest websites for digital media on the internet. Moreover, it can be one of the vital platforms for tracking the public’s mental health and feelings via sentimental analysis of news headlines and detailed content related to finance. One of the key purposes of this study is the public’s mental health tracking via the sentimental analysis of financial text news primarily published on digital media to identify the overall mental health of the public and the impact of national or international financial policies. A dataset was collected using The Guardian application programming interface and processed using the support vector machine, AdaBoost, and single layer convolutional neural network. Among all identified techniques, the single layer convolutional neural network with a classification accuracy of 0.939 is considered the best during the training and testing phases as it produced efficient performance and effective results compared to other techniques, such as support vector machine and AdaBoost with associated classification accuracies 0.677 and 0.761, respectively. The findings of this research would also benefit public health, as well as financial and non-financial institutions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Environmental Research and Public Health

  • ISSN

    1660-4601

  • e-ISSN

    1660-4601

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    27

  • Strana od-do

    1-27

  • Kód UT WoS článku

    000839251900001

  • EID výsledku v databázi Scopus

    2-s2.0-85136342127