Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigating the role of swear words in abusive language detection tasks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3APTAFB3FB" target="_blank" >RIV/00216208:11320/22:PTAFB3FB - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10579-022-09582-8" target="_blank" >https://doi.org/10.1007/s10579-022-09582-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10579-022-09582-8" target="_blank" >10.1007/s10579-022-09582-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigating the role of swear words in abusive language detection tasks

  • Popis výsledku v původním jazyce

    Swearing plays an ubiquitous role in everyday conversations among humans, both in oral and textual communication, and occurs frequently in social media texts, typically featured by informal language and spontaneous writing. Such occurrences can be linked to an abusive context, when they contribute to the expression of hatred and to the abusive effect, causing harm and offense. However, swearing is multifaceted and is often used in casual contexts, also with positive social functions. In this study, we explore the phenomenon of swearing in Twitter conversations, by automatically predicting the abusiveness of a swear word in a tweet as the main investigation perspective. We developed the Twitter English corpus SWAD (Swear Words Abusiveness Dataset), where abusive swearing is manually annotated at the word level. Our collection consists of 2577 instances in total from two phases of manual annotation. We developed models to automatically predict abusive swearing, to provide an intrinsic evaluation of SWAD and confirm the robustness of the resource. We model this prediction task as three different tasks, namely sequence labeling, text classification, and target-based swear word abusiveness prediction. We experimentally found that our intention to model the task similarly to aspect-based sentiment analysis leads to promising results. Subsequently, we employ the classifier to improve the prediction of abusive language in several standard benchmarks. The results of our experiments show that additional abusiveness feature of the swear words is able to improve the performance of abusive language detection models in several benchmark datasets.

  • Název v anglickém jazyce

    Investigating the role of swear words in abusive language detection tasks

  • Popis výsledku anglicky

    Swearing plays an ubiquitous role in everyday conversations among humans, both in oral and textual communication, and occurs frequently in social media texts, typically featured by informal language and spontaneous writing. Such occurrences can be linked to an abusive context, when they contribute to the expression of hatred and to the abusive effect, causing harm and offense. However, swearing is multifaceted and is often used in casual contexts, also with positive social functions. In this study, we explore the phenomenon of swearing in Twitter conversations, by automatically predicting the abusiveness of a swear word in a tweet as the main investigation perspective. We developed the Twitter English corpus SWAD (Swear Words Abusiveness Dataset), where abusive swearing is manually annotated at the word level. Our collection consists of 2577 instances in total from two phases of manual annotation. We developed models to automatically predict abusive swearing, to provide an intrinsic evaluation of SWAD and confirm the robustness of the resource. We model this prediction task as three different tasks, namely sequence labeling, text classification, and target-based swear word abusiveness prediction. We experimentally found that our intention to model the task similarly to aspect-based sentiment analysis leads to promising results. Subsequently, we employ the classifier to improve the prediction of abusive language in several standard benchmarks. The results of our experiments show that additional abusiveness feature of the swear words is able to improve the performance of abusive language detection models in several benchmark datasets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Language Resources and Evaluation [online]

  • ISSN

    1574-0218

  • e-ISSN

    1574-0218

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    34

  • Strana od-do

    155-188

  • Kód UT WoS článku

    000757127500001

  • EID výsledku v databázi Scopus

    2-s2.0-85124731080