Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A BERT's Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AQCXFI9DD" target="_blank" >RIV/00216208:11320/22:QCXFI9DD - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.mwe-1.13" target="_blank" >https://aclanthology.org/2022.mwe-1.13</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A BERT's Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models

  • Popis výsledku v původním jazyce

    This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the shared task, and present some best practices for minority languages addressing this task.

  • Název v anglickém jazyce

    A BERT's Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models

  • Popis výsledku anglicky

    This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the shared task, and present some best practices for minority languages addressing this task.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 18th Workshop on Multiword Expressions (MWE 2022) n@LREC2022

  • ISBN

    979-10-95546-90-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    89-99

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

  • Místo konání akce

    Marseille, France

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku