Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Relation Dimension in the Identification and Classification of Lexically Restricted Word Co-Occurrences in Text Corpora

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ARFS659B8" target="_blank" >RIV/00216208:11320/22:RFS659B8 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/10/20/3831" target="_blank" >https://www.mdpi.com/2227-7390/10/20/3831</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10203831" target="_blank" >10.3390/math10203831</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Relation Dimension in the Identification and Classification of Lexically Restricted Word Co-Occurrences in Text Corpora

  • Popis výsledku v původním jazyce

    The speech of native speakers is full of idiosyncrasies. Especially prominent are lexically restricted binary word co-occurrences of the type high esteem, strong tea, run [an] experiment, war break(s) out, etc. In lexicography, such co-occurrences are referred to as collocations. Due to their semi-decompositional nature, collocations are of high relevance to a large number of natural language processing applications as well as to second language learning. A substantial body of work exists on the automatic recognition of collocations in textual material and, increasingly also on their semantic classification, even if not yet in the mainstream research. Especially classification with respect to the lexical function (LF) taxonomy, which is the most detailed semantically oriented taxonomy of collocations available to date, proved to be of real use to human speakers and machines alike. The most recent approaches in the field are based on multilingual neural graph transformer models that use explicit syntactic dependencies. Our goal is to explore whether the extension of such a model by a semantic relation extraction network improves its classification performance or whether it already learns the corresponding semantic relations from the dependencies and the sentential contexts, such that an additional relation extraction network will not improve the overall performance. The experiments show that the semantic relation extraction layer indeed improves the overall performance of a graph transformer. However, this improvement is not very significant, such that we can conclude that graph transformers already learn to a certain extent the semantics of the dependencies between the collocation elements.

  • Název v anglickém jazyce

    The Relation Dimension in the Identification and Classification of Lexically Restricted Word Co-Occurrences in Text Corpora

  • Popis výsledku anglicky

    The speech of native speakers is full of idiosyncrasies. Especially prominent are lexically restricted binary word co-occurrences of the type high esteem, strong tea, run [an] experiment, war break(s) out, etc. In lexicography, such co-occurrences are referred to as collocations. Due to their semi-decompositional nature, collocations are of high relevance to a large number of natural language processing applications as well as to second language learning. A substantial body of work exists on the automatic recognition of collocations in textual material and, increasingly also on their semantic classification, even if not yet in the mainstream research. Especially classification with respect to the lexical function (LF) taxonomy, which is the most detailed semantically oriented taxonomy of collocations available to date, proved to be of real use to human speakers and machines alike. The most recent approaches in the field are based on multilingual neural graph transformer models that use explicit syntactic dependencies. Our goal is to explore whether the extension of such a model by a semantic relation extraction network improves its classification performance or whether it already learns the corresponding semantic relations from the dependencies and the sentential contexts, such that an additional relation extraction network will not improve the overall performance. The experiments show that the semantic relation extraction layer indeed improves the overall performance of a graph transformer. However, this improvement is not very significant, such that we can conclude that graph transformers already learn to a certain extent the semantics of the dependencies between the collocation elements.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics [online]

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    21

  • Strana od-do

    1-21

  • Kód UT WoS článku

    000873251500001

  • EID výsledku v databázi Scopus

    2-s2.0-85140594457