Auditing Search Query Suggestion Bias Through Recursive Algorithm Interrogation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ASL6VQULZ" target="_blank" >RIV/00216208:11320/22:SL6VQULZ - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3501247.3531567" target="_blank" >https://doi.org/10.1145/3501247.3531567</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3501247.3531567" target="_blank" >10.1145/3501247.3531567</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Auditing Search Query Suggestion Bias Through Recursive Algorithm Interrogation
Popis výsledku v původním jazyce
Despite their important role in online information search, search query suggestions have not been researched as much as most other aspects of search engines. Although reasons for this are multi-faceted, the sparseness of context and the limited data basis of up to ten suggestions per search query pose the most significant problem in identifying bias in search query suggestions. The most proven method to reduce sparseness and improve the validity of bias identification of search query suggestions so far is to consider suggestions from subsequent searches over time for the same query. This work presents a new, alternative approach to search query bias identification that includes less high-level suggestions to deepen the data basis of bias analyses. We employ recursive algorithm interrogation techniques and create suggestion trees that enable access to more subliminal search query suggestions. Based on these suggestions, we investigate topical group bias in person-related searches in the political domain.
Název v anglickém jazyce
Auditing Search Query Suggestion Bias Through Recursive Algorithm Interrogation
Popis výsledku anglicky
Despite their important role in online information search, search query suggestions have not been researched as much as most other aspects of search engines. Although reasons for this are multi-faceted, the sparseness of context and the limited data basis of up to ten suggestions per search query pose the most significant problem in identifying bias in search query suggestions. The most proven method to reduce sparseness and improve the validity of bias identification of search query suggestions so far is to consider suggestions from subsequent searches over time for the same query. This work presents a new, alternative approach to search query bias identification that includes less high-level suggestions to deepen the data basis of bias analyses. We employ recursive algorithm interrogation techniques and create suggestion trees that enable access to more subliminal search query suggestions. Based on these suggestions, we investigate topical group bias in person-related searches in the political domain.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
14th ACM Web Science Conference 2022
ISBN
978-1-4503-9191-7
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
219-227
Název nakladatele
Association for Computing Machinery
Místo vydání
—
Místo konání akce
New York, NY, USA
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—