Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using Language Models to Improve Rule-based Linguistic Annotation of Modern Historical Japanese Corpora

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ASZHJDYMU" target="_blank" >RIV/00216208:11320/22:SZHJDYMU - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.latechclfl-1.5" target="_blank" >https://aclanthology.org/2022.latechclfl-1.5</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using Language Models to Improve Rule-based Linguistic Annotation of Modern Historical Japanese Corpora

  • Popis výsledku v původním jazyce

    Annotation of unlabeled textual corpora with linguistic metadata is a fundamental technology in many scholarly workflows in the digital humanities (DH). Pretrained natural language processing pipelines offer tokenization, tagging, and dependency parsing of raw text simultaneously using an annotation scheme like Universal Dependencies (UD). However, the accuracy of these UD tools remains unknown for historical texts and current methods lack mechanisms that enable helpful evaluations by domain experts. To address both points for the case of Modern Historical Japanese text, this paper proposes the use of unsupervised domain adaptation methods to develop a domain-adapted language model (LM) that can flag instances of inaccurate UD output from a pretrained LM and the use of these instances to form rules that, when applied, improves pretrained annotation accuracy. To test the efficacy of the proposed approach, the paper evaluates the domain-adapted LM against three baselines that are not adapted to the historical domain. The experiments conducted demonstrate that the domain-adapted LM improves UD annotation in the Modern Historical Japanese domain and that rules produced using this LM are best indicative of characteristics of the domain in terms of out-of-vocabulary rate and candidate normalized form discovery for “difficult” bigram terms.

  • Název v anglickém jazyce

    Using Language Models to Improve Rule-based Linguistic Annotation of Modern Historical Japanese Corpora

  • Popis výsledku anglicky

    Annotation of unlabeled textual corpora with linguistic metadata is a fundamental technology in many scholarly workflows in the digital humanities (DH). Pretrained natural language processing pipelines offer tokenization, tagging, and dependency parsing of raw text simultaneously using an annotation scheme like Universal Dependencies (UD). However, the accuracy of these UD tools remains unknown for historical texts and current methods lack mechanisms that enable helpful evaluations by domain experts. To address both points for the case of Modern Historical Japanese text, this paper proposes the use of unsupervised domain adaptation methods to develop a domain-adapted language model (LM) that can flag instances of inaccurate UD output from a pretrained LM and the use of these instances to form rules that, when applied, improves pretrained annotation accuracy. To test the efficacy of the proposed approach, the paper evaluates the domain-adapted LM against three baselines that are not adapted to the historical domain. The experiments conducted demonstrate that the domain-adapted LM improves UD annotation in the Modern Historical Japanese domain and that rules produced using this LM are best indicative of characteristics of the domain in terms of out-of-vocabulary rate and candidate normalized form discovery for “difficult” bigram terms.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 6th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

  • ISBN

  • ISSN

    2951-2093

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    30-39

  • Název nakladatele

    International Conference on Computational Linguistics

  • Místo vydání

  • Místo konání akce

    Gyeongju, Republic of Korea

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku