Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parameterized Inapproximability of Independent Set in H-Free Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10453197" target="_blank" >RIV/00216208:11320/23:10453197 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6sy13jYU7t" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6sy13jYU7t</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00453-022-01052-5" target="_blank" >10.1007/s00453-022-01052-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parameterized Inapproximability of Independent Set in H-Free Graphs

  • Popis výsledku v původním jazyce

    We study the Independent Set problem in H-free graphs, i.e., graphs excluding some fixed graph H as an induced subgraph. We prove several inapproximability results both for polynomial-time and parameterized algorithms. Halldórsson [SODA 1995] showed that for every δ&gt; 0 the Independent Set problem has a polynomial-time (d-12+δ)-approximation algorithm in K1,d-free graphs. We extend this result by showing that Ka,b-free graphs admit a polynomial-timeO(α(G) 1-1/a) -approximation, where α(G) is the size of a maximum independent set in G. Furthermore, we complement the result of Halldórsson by showing that for some γ= Θ (d/ log d) , there is no polynomial-time γ-approximation algorithm for these graphs, unless NP = ZPP. Bonnet et al. [Algorithmica 2020] showed that Independent Set parameterized by the size k of the independent set is W[1]-hard on graphs which do not contain (1) a cycle of constant length at least 4, (2) the star K1 , 4, and (3) any tree with two vertices of degree at least 3 at constant distance. We strengthen this result by proving three inapproximability results under different complexity assumptions for almost the same class of graphs (we weaken conditions (1) and (2) that G does not contain a cycle of constant length at least 5 or K1 , 5). First, under the ETH, there is no f(k) . no(k/logk) algorithm for any computable function f. Then, under the deterministic Gap-ETH, there is a constant δ&gt; 0 such that no δ-approximation can be computed in f(k) . nO(1) time. Also, under the stronger randomized Gap-ETH there is no such approximation algorithm with runtime f(k).no(k). Finally, we consider the parameterization by the excluded graph H, and show that under the ETH, Independent Set has no no(α(H)) algorithm in H-free graphs. Also, we prove that there is no d/ ko(1)-approximation algorithm for K1,d-free graphs with runtime f(d, k) . nO(1), under the deterministic Gap-ETH.

  • Název v anglickém jazyce

    Parameterized Inapproximability of Independent Set in H-Free Graphs

  • Popis výsledku anglicky

    We study the Independent Set problem in H-free graphs, i.e., graphs excluding some fixed graph H as an induced subgraph. We prove several inapproximability results both for polynomial-time and parameterized algorithms. Halldórsson [SODA 1995] showed that for every δ&gt; 0 the Independent Set problem has a polynomial-time (d-12+δ)-approximation algorithm in K1,d-free graphs. We extend this result by showing that Ka,b-free graphs admit a polynomial-timeO(α(G) 1-1/a) -approximation, where α(G) is the size of a maximum independent set in G. Furthermore, we complement the result of Halldórsson by showing that for some γ= Θ (d/ log d) , there is no polynomial-time γ-approximation algorithm for these graphs, unless NP = ZPP. Bonnet et al. [Algorithmica 2020] showed that Independent Set parameterized by the size k of the independent set is W[1]-hard on graphs which do not contain (1) a cycle of constant length at least 4, (2) the star K1 , 4, and (3) any tree with two vertices of degree at least 3 at constant distance. We strengthen this result by proving three inapproximability results under different complexity assumptions for almost the same class of graphs (we weaken conditions (1) and (2) that G does not contain a cycle of constant length at least 5 or K1 , 5). First, under the ETH, there is no f(k) . no(k/logk) algorithm for any computable function f. Then, under the deterministic Gap-ETH, there is a constant δ&gt; 0 such that no δ-approximation can be computed in f(k) . nO(1) time. Also, under the stronger randomized Gap-ETH there is no such approximation algorithm with runtime f(k).no(k). Finally, we consider the parameterization by the excluded graph H, and show that under the ETH, Independent Set has no no(α(H)) algorithm in H-free graphs. Also, we prove that there is no d/ ko(1)-approximation algorithm for K1,d-free graphs with runtime f(d, k) . nO(1), under the deterministic Gap-ETH.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Algorithmica

  • ISSN

    0178-4617

  • e-ISSN

    1432-0541

  • Svazek periodika

    85

  • Číslo periodika v rámci svazku

    October 2022

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    902-928

  • Kód UT WoS článku

    000870595900002

  • EID výsledku v databázi Scopus

    2-s2.0-85140315398