Mechanical response of elastic materials with density dependent Young modulus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10464919" target="_blank" >RIV/00216208:11320/23:10464919 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uniZj6kye9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uniZj6kye9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apples.2023.100126" target="_blank" >10.1016/j.apples.2023.100126</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanical response of elastic materials with density dependent Young modulus
Popis výsledku v původním jazyce
The experimental as well as theoretical engineering literature on porous structures such as metal foams, aerogels or bones often relies on the standard linearised elasticity theory, and, simultaneously, it frequently introduces the concept of "density dependent Young modulus". We interpret the concept of "density dependent Young modulus" literally, that is we consider the linearised elasticity theory with the generalised Young modulus being a function of the current density, and we briefly summarise the existing literature on theoretical justification of such models. Subsequently we numerically study the response of elastic materials with the "density dependent Young modulus" in several complex geometrical settings. In particular, we study the extension of a right circular cylinder, the deflection of a thin plate, the bending of a beam, and the compression of a cube subject to a surface load, and we quantify the impact of the density dependent Young modulus on the mechanical response in the given setting. In some geometrical settings the impact is almost nonexisting-the results based on the classical theory with the constant Young modulus are nearly identical to the results obtained for the density dependent Young modulus. However, in some cases such as the deflection of a thin plate, the results obtained with constant/density dependent Young modulus differ considerably despite the fact that in both cases the infinitesimal strain condition is well satisfied.
Název v anglickém jazyce
Mechanical response of elastic materials with density dependent Young modulus
Popis výsledku anglicky
The experimental as well as theoretical engineering literature on porous structures such as metal foams, aerogels or bones often relies on the standard linearised elasticity theory, and, simultaneously, it frequently introduces the concept of "density dependent Young modulus". We interpret the concept of "density dependent Young modulus" literally, that is we consider the linearised elasticity theory with the generalised Young modulus being a function of the current density, and we briefly summarise the existing literature on theoretical justification of such models. Subsequently we numerically study the response of elastic materials with the "density dependent Young modulus" in several complex geometrical settings. In particular, we study the extension of a right circular cylinder, the deflection of a thin plate, the bending of a beam, and the compression of a cube subject to a surface load, and we quantify the impact of the density dependent Young modulus on the mechanical response in the given setting. In some geometrical settings the impact is almost nonexisting-the results based on the classical theory with the constant Young modulus are nearly identical to the results obtained for the density dependent Young modulus. However, in some cases such as the deflection of a thin plate, the results obtained with constant/density dependent Young modulus differ considerably despite the fact that in both cases the infinitesimal strain condition is well satisfied.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications in Engineering Science
ISSN
2666-4968
e-ISSN
2666-4968
Svazek periodika
14
Číslo periodika v rámci svazku
7 February 2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
100126
Kód UT WoS článku
001034009700001
EID výsledku v databázi Scopus
2-s2.0-85147913378