Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mechanical response of elastic materials with density dependent Young modulus

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10464919" target="_blank" >RIV/00216208:11320/23:10464919 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uniZj6kye9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uniZj6kye9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apples.2023.100126" target="_blank" >10.1016/j.apples.2023.100126</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mechanical response of elastic materials with density dependent Young modulus

  • Popis výsledku v původním jazyce

    The experimental as well as theoretical engineering literature on porous structures such as metal foams, aerogels or bones often relies on the standard linearised elasticity theory, and, simultaneously, it frequently introduces the concept of &quot;density dependent Young modulus&quot;. We interpret the concept of &quot;density dependent Young modulus&quot; literally, that is we consider the linearised elasticity theory with the generalised Young modulus being a function of the current density, and we briefly summarise the existing literature on theoretical justification of such models. Subsequently we numerically study the response of elastic materials with the &quot;density dependent Young modulus&quot; in several complex geometrical settings. In particular, we study the extension of a right circular cylinder, the deflection of a thin plate, the bending of a beam, and the compression of a cube subject to a surface load, and we quantify the impact of the density dependent Young modulus on the mechanical response in the given setting. In some geometrical settings the impact is almost nonexisting-the results based on the classical theory with the constant Young modulus are nearly identical to the results obtained for the density dependent Young modulus. However, in some cases such as the deflection of a thin plate, the results obtained with constant/density dependent Young modulus differ considerably despite the fact that in both cases the infinitesimal strain condition is well satisfied.

  • Název v anglickém jazyce

    Mechanical response of elastic materials with density dependent Young modulus

  • Popis výsledku anglicky

    The experimental as well as theoretical engineering literature on porous structures such as metal foams, aerogels or bones often relies on the standard linearised elasticity theory, and, simultaneously, it frequently introduces the concept of &quot;density dependent Young modulus&quot;. We interpret the concept of &quot;density dependent Young modulus&quot; literally, that is we consider the linearised elasticity theory with the generalised Young modulus being a function of the current density, and we briefly summarise the existing literature on theoretical justification of such models. Subsequently we numerically study the response of elastic materials with the &quot;density dependent Young modulus&quot; in several complex geometrical settings. In particular, we study the extension of a right circular cylinder, the deflection of a thin plate, the bending of a beam, and the compression of a cube subject to a surface load, and we quantify the impact of the density dependent Young modulus on the mechanical response in the given setting. In some geometrical settings the impact is almost nonexisting-the results based on the classical theory with the constant Young modulus are nearly identical to the results obtained for the density dependent Young modulus. However, in some cases such as the deflection of a thin plate, the results obtained with constant/density dependent Young modulus differ considerably despite the fact that in both cases the infinitesimal strain condition is well satisfied.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applications in Engineering Science

  • ISSN

    2666-4968

  • e-ISSN

    2666-4968

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    7 February 2023

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    100126

  • Kód UT WoS článku

    001034009700001

  • EID výsledku v databázi Scopus

    2-s2.0-85147913378