Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10466910" target="_blank" >RIV/00216208:11320/23:10466910 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iG9-6iK.k8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iG9-6iK.k8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d3nr02585c" target="_blank" >10.1039/d3nr02585c</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond

  • Popis výsledku v původním jazyce

    Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes via chemical anchors by applying a high source-drain bias (&gt;1 V), the conductance was limited to G(0), G(0) being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at &amp; SIM;0.2G(0) in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH2) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (&lt;0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of &amp; SIM;660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.

  • Název v anglickém jazyce

    Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond

  • Popis výsledku anglicky

    Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes via chemical anchors by applying a high source-drain bias (&gt;1 V), the conductance was limited to G(0), G(0) being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at &amp; SIM;0.2G(0) in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH2) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (&lt;0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of &amp; SIM;660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-22419S" target="_blank" >GA22-22419S: Molekulární spintronika: řízení spin-orbitálních polí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nanoscale

  • ISSN

    2040-3364

  • e-ISSN

    2040-3372

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    31

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    12995-13008

  • Kód UT WoS článku

    001033778600001

  • EID výsledku v databázi Scopus

    2-s2.0-85167368509