Short Definitions in Constraint Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471838" target="_blank" >RIV/00216208:11320/23:10471838 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.MFCS.2023.28" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2023.28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2023.28" target="_blank" >10.4230/LIPIcs.MFCS.2023.28</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short Definitions in Constraint Languages
Popis výsledku v původním jazyce
A first-order formula is called primitive positive (pp) if it only admits the use of existential quantifiers and conjunction. Pp-formulas are a central concept in (fixed-template) constraint satisfaction since CSP(Γ) can be viewed as the problem of deciding the primitive positive theory of Γ, and pp-definability captures gadget reductions between CSPs. An important class of tractable constraint languages Γ is characterized by having few subpowers, that is, the number of n-ary relations pp-definable from Γ is bounded by 2^p(n) for some polynomial p(n). In this paper we study a restriction of this property, stating that every pp-definable relation is definable by a pp-formula of polynomial length. We conjecture that the existence of such short definitions is actually equivalent to Γ having few subpowers, and verify this conjecture for a large subclass that, in particular, includes all constraint languages on three-element domains. We furthermore discuss how our conjecture imposes an upper complexity bound of co-NP on the subpower membership problem of algebras with few subpowers.
Název v anglickém jazyce
Short Definitions in Constraint Languages
Popis výsledku anglicky
A first-order formula is called primitive positive (pp) if it only admits the use of existential quantifiers and conjunction. Pp-formulas are a central concept in (fixed-template) constraint satisfaction since CSP(Γ) can be viewed as the problem of deciding the primitive positive theory of Γ, and pp-definability captures gadget reductions between CSPs. An important class of tractable constraint languages Γ is characterized by having few subpowers, that is, the number of n-ary relations pp-definable from Γ is bounded by 2^p(n) for some polynomial p(n). In this paper we study a restriction of this property, stating that every pp-definable relation is definable by a pp-formula of polynomial length. We conjecture that the existence of such short definitions is actually equivalent to Γ having few subpowers, and verify this conjecture for a large subclass that, in particular, includes all constraint languages on three-element domains. We furthermore discuss how our conjecture imposes an upper complexity bound of co-NP on the subpower membership problem of algebras with few subpowers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19070" target="_blank" >LTAUSA19070: Komutátory, kvazigrupy a Yang-Baxterova rovnice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
ISBN
978-3-95977-292-1
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
2-15
Název nakladatele
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Místo vydání
Leibniz
Místo konání akce
Bordeaux
Datum konání akce
28. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—