Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Newton-based approach to solving K-SVCR and Twin-KSVC multi-class classification in the primal space

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472183" target="_blank" >RIV/00216208:11320/23:10472183 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/44555601:13440/23:43897767

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Niq2fXsdM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Niq2fXsdM</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cor.2023.106370" target="_blank" >10.1016/j.cor.2023.106370</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Newton-based approach to solving K-SVCR and Twin-KSVC multi-class classification in the primal space

  • Popis výsledku v původním jazyce

    Multi-class classification is an important problem in machine learning, which often occurs in the real world and is an ongoing research issue. Support vector classification-regression machine for -class classification (K-SVCR) and twin -class support vector classification (Twin-KSVC) are two novel machine learning methods for multi-class classification problems. This paper presents novel methods to solve the primal problems of K-SVCR and Twin-KSVC, known as NK-SVCR and NTW-KSVC, respectively. The proposed methods evaluate all training data into a &quot;1-versus-1-versus-rest&quot;structure, so it generates ternary outputs {-1,0, +1}. The primal problems are reformulated as unconstrained optimization problems so that the objective functions are only once differentiable, not twice, therefore an extension of the Newton-Armijo algorithm is adopted for finding their solution. To test the efficiency and validity of the proposed methods, we compare the classification accuracy and learning time of these methods with K-SVCR and Twin-KSVC on the United States Postal Service (USPS) handwriting digital data sets and several University of California Irvine (UCI) benchmark data sets. To analyze more in aspect of training time, we also compared all methods on the multi-class version of the Normally Distributed Clustered (NDC) database. To further analyze classification accuracy and learning time differences between the classifiers, the statistical Friedman&apos;s test is used.

  • Název v anglickém jazyce

    Newton-based approach to solving K-SVCR and Twin-KSVC multi-class classification in the primal space

  • Popis výsledku anglicky

    Multi-class classification is an important problem in machine learning, which often occurs in the real world and is an ongoing research issue. Support vector classification-regression machine for -class classification (K-SVCR) and twin -class support vector classification (Twin-KSVC) are two novel machine learning methods for multi-class classification problems. This paper presents novel methods to solve the primal problems of K-SVCR and Twin-KSVC, known as NK-SVCR and NTW-KSVC, respectively. The proposed methods evaluate all training data into a &quot;1-versus-1-versus-rest&quot;structure, so it generates ternary outputs {-1,0, +1}. The primal problems are reformulated as unconstrained optimization problems so that the objective functions are only once differentiable, not twice, therefore an extension of the Newton-Armijo algorithm is adopted for finding their solution. To test the efficiency and validity of the proposed methods, we compare the classification accuracy and learning time of these methods with K-SVCR and Twin-KSVC on the United States Postal Service (USPS) handwriting digital data sets and several University of California Irvine (UCI) benchmark data sets. To analyze more in aspect of training time, we also compared all methods on the multi-class version of the Normally Distributed Clustered (NDC) database. To further analyze classification accuracy and learning time differences between the classifiers, the statistical Friedman&apos;s test is used.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Operations Research

  • ISSN

    0305-0548

  • e-ISSN

    1873-765X

  • Svazek periodika

    160

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    106370

  • Kód UT WoS článku

    001055149700001

  • EID výsledku v databázi Scopus

    2-s2.0-85167836230