Newton-based approach to solving K-SVCR and Twin-KSVC multi-class classification in the primal space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472183" target="_blank" >RIV/00216208:11320/23:10472183 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/23:43897767
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Niq2fXsdM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Niq2fXsdM</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cor.2023.106370" target="_blank" >10.1016/j.cor.2023.106370</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Newton-based approach to solving K-SVCR and Twin-KSVC multi-class classification in the primal space
Popis výsledku v původním jazyce
Multi-class classification is an important problem in machine learning, which often occurs in the real world and is an ongoing research issue. Support vector classification-regression machine for -class classification (K-SVCR) and twin -class support vector classification (Twin-KSVC) are two novel machine learning methods for multi-class classification problems. This paper presents novel methods to solve the primal problems of K-SVCR and Twin-KSVC, known as NK-SVCR and NTW-KSVC, respectively. The proposed methods evaluate all training data into a "1-versus-1-versus-rest"structure, so it generates ternary outputs {-1,0, +1}. The primal problems are reformulated as unconstrained optimization problems so that the objective functions are only once differentiable, not twice, therefore an extension of the Newton-Armijo algorithm is adopted for finding their solution. To test the efficiency and validity of the proposed methods, we compare the classification accuracy and learning time of these methods with K-SVCR and Twin-KSVC on the United States Postal Service (USPS) handwriting digital data sets and several University of California Irvine (UCI) benchmark data sets. To analyze more in aspect of training time, we also compared all methods on the multi-class version of the Normally Distributed Clustered (NDC) database. To further analyze classification accuracy and learning time differences between the classifiers, the statistical Friedman's test is used.
Název v anglickém jazyce
Newton-based approach to solving K-SVCR and Twin-KSVC multi-class classification in the primal space
Popis výsledku anglicky
Multi-class classification is an important problem in machine learning, which often occurs in the real world and is an ongoing research issue. Support vector classification-regression machine for -class classification (K-SVCR) and twin -class support vector classification (Twin-KSVC) are two novel machine learning methods for multi-class classification problems. This paper presents novel methods to solve the primal problems of K-SVCR and Twin-KSVC, known as NK-SVCR and NTW-KSVC, respectively. The proposed methods evaluate all training data into a "1-versus-1-versus-rest"structure, so it generates ternary outputs {-1,0, +1}. The primal problems are reformulated as unconstrained optimization problems so that the objective functions are only once differentiable, not twice, therefore an extension of the Newton-Armijo algorithm is adopted for finding their solution. To test the efficiency and validity of the proposed methods, we compare the classification accuracy and learning time of these methods with K-SVCR and Twin-KSVC on the United States Postal Service (USPS) handwriting digital data sets and several University of California Irvine (UCI) benchmark data sets. To analyze more in aspect of training time, we also compared all methods on the multi-class version of the Normally Distributed Clustered (NDC) database. To further analyze classification accuracy and learning time differences between the classifiers, the statistical Friedman's test is used.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Operations Research
ISSN
0305-0548
e-ISSN
1873-765X
Svazek periodika
160
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
106370
Kód UT WoS článku
001055149700001
EID výsledku v databázi Scopus
2-s2.0-85167836230