Complexity Issues in Interval Linear Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472191" target="_blank" >RIV/00216208:11320/23:10472191 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-28863-0_11" target="_blank" >https://doi.org/10.1007/978-3-031-28863-0_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-28863-0_11" target="_blank" >10.1007/978-3-031-28863-0_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity Issues in Interval Linear Programming
Popis výsledku v původním jazyce
Interval linear programming studies linear programming problems with interval coefficients. Herein, the intervals represent a range of possible values the coefficients may attain, independently of each other. They usually originate from a certain uncertainty of obtaining the data, but they can also be used in a type of a sensitivity analysis. The goal of interval linear programming is to provide tools for analysing the effects of data variations on the optimal value, optimal solutions and other characteristics. This paper is a contribution to computational complexity theory. Some problems in interval linear programming are known to be polynomially solvable, but some were proved to be NP-hard. We help to improve this classification by stating several novel complexity results. In particular, we show NP-hardness of the following problems: checking whether a particular value is attained as an optimal value; testing connectedness and convexity of the optimal solution set; and checking whether a given solution is robustly optimal for each realization of the interval values.
Název v anglickém jazyce
Complexity Issues in Interval Linear Programming
Popis výsledku anglicky
Interval linear programming studies linear programming problems with interval coefficients. Herein, the intervals represent a range of possible values the coefficients may attain, independently of each other. They usually originate from a certain uncertainty of obtaining the data, but they can also be used in a type of a sensitivity analysis. The goal of interval linear programming is to provide tools for analysing the effects of data variations on the optimal value, optimal solutions and other characteristics. This paper is a contribution to computational complexity theory. Some problems in interval linear programming are known to be polynomially solvable, but some were proved to be NP-hard. We help to improve this classification by stating several novel complexity results. In particular, we show NP-hardness of the following problems: checking whether a particular value is attained as an optimal value; testing connectedness and convexity of the optimal solution set; and checking whether a given solution is robustly optimal for each realization of the interval values.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
AIRO Springer Series
ISBN
978-3-031-28862-3
Počet stran výsledku
11
Strana od-do
123-133
Počet stran knihy
366
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—