Maximum likelihood estimation of the Hull-White model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473040" target="_blank" >RIV/00216208:11320/23:10473040 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FmVj86LOEf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FmVj86LOEf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jempfin.2022.12.002" target="_blank" >10.1016/j.jempfin.2022.12.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximum likelihood estimation of the Hull-White model
Popis výsledku v původním jazyce
We suggest a maximum likelihood estimation method for the popular Hull-White interest rate model. Our method uses a time series of yield curves to estimate model parameters under both risk-neutral and real-world measures. The suggested approach thus offers a solution to two possible drawbacks of calibration to prices of vanilla interest rate derivatives, the current standard for identification of time-inhomogeneous interest rate models. First, our method allows for derivatives pricing on illiquid markets where prices of vanilla products, which the model is calibrated to, are not available. Second, as we identify the real-world measure, we facilitate the use of the Hull-White model for forecasting and hence risk and portfolio management. The main idea of our approach is to maximise the likelihood of yields in periods subsequent to the time at which the model's time-dependent parameter is fitted to a market forward rate curve. The empirical part of the paper implements the suggested estimation approach on EUR interest rate data. We investigate in-sample and out-of-sample performance of the estimated model, and compare estimation with calibration to swaption prices.
Název v anglickém jazyce
Maximum likelihood estimation of the Hull-White model
Popis výsledku anglicky
We suggest a maximum likelihood estimation method for the popular Hull-White interest rate model. Our method uses a time series of yield curves to estimate model parameters under both risk-neutral and real-world measures. The suggested approach thus offers a solution to two possible drawbacks of calibration to prices of vanilla interest rate derivatives, the current standard for identification of time-inhomogeneous interest rate models. First, our method allows for derivatives pricing on illiquid markets where prices of vanilla products, which the model is calibrated to, are not available. Second, as we identify the real-world measure, we facilitate the use of the Hull-White model for forecasting and hence risk and portfolio management. The main idea of our approach is to maximise the likelihood of yields in periods subsequent to the time at which the model's time-dependent parameter is fitted to a market forward rate curve. The empirical part of the paper implements the suggested estimation approach on EUR interest rate data. We investigate in-sample and out-of-sample performance of the estimated model, and compare estimation with calibration to swaption prices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28231X" target="_blank" >GX19-28231X: Dynamické modely pro digitální finance</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Empirical Finance
ISSN
0927-5398
e-ISSN
1879-1727
Svazek periodika
70
Číslo periodika v rámci svazku
JAN 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
227-247
Kód UT WoS článku
000920747300001
EID výsledku v databázi Scopus
2-s2.0-85144801573