Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The influence of heterogeneous seafloor heat flux on the cooling patterns of Ganymede's and Titan's subsurface oceans

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473462" target="_blank" >RIV/00216208:11320/23:10473462 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hD02EoVLmy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hD02EoVLmy</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.icarus.2022.115232" target="_blank" >10.1016/j.icarus.2022.115232</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The influence of heterogeneous seafloor heat flux on the cooling patterns of Ganymede's and Titan's subsurface oceans

  • Popis výsledku v původním jazyce

    Several icy moons of Jupiter and Saturn are known to possess deep water oceans. Heating in the rocky mantle underneath often produces heterogeneous heat flux patterns at the ocean&apos;s seafloor. How this internal ocean dynamically relates the seafloor to the surface ice shell is a crucial question to understand the long term evolution of icy moons. Here we investigate how a heterogeneous seafloor heat flux pattern affects the convection and heat transfer in the subsurface ocean of large icy worlds involving a high pressure ice layer beneath the seafloor such as Titan or Ganymede. We perform rotating convection simulations in a thin 3D spherical shell with a prescribed heterogeneous bottom heat flux inferred from 3D convection simulations of the underlying mantle (Choblet et al., 2017b). In our simulations, although the amplitude of imposed inner boundary heat flux heterogeneity is rather moderate, preferred longitudes of intense outer boundary heat flux are highly correlated with longitudes of intense inner boundary heat flux. In addition, a small imposed inner boundary large-scale order 2 pattern is amplified at the outer boundary heat flux by the convection in the thin shell. Lastly, deviations from axisymmetry and equatorial symmetry in the outer boundary heat flux increase with the main convection vigor and the amplitude of the inner boundary heterogeneity. In our models polar vs. equatorial cooling is mostly controlled by inertial effects, as was found by Amit et al. (2020) for homogeneous boundary conditions, with the latitudinally equilibrated inner boundary heterogeneity acting to reduce the amplitude of this effect. Our results support polar cooling for Titan&apos;s sub-surface ocean.

  • Název v anglickém jazyce

    The influence of heterogeneous seafloor heat flux on the cooling patterns of Ganymede's and Titan's subsurface oceans

  • Popis výsledku anglicky

    Several icy moons of Jupiter and Saturn are known to possess deep water oceans. Heating in the rocky mantle underneath often produces heterogeneous heat flux patterns at the ocean&apos;s seafloor. How this internal ocean dynamically relates the seafloor to the surface ice shell is a crucial question to understand the long term evolution of icy moons. Here we investigate how a heterogeneous seafloor heat flux pattern affects the convection and heat transfer in the subsurface ocean of large icy worlds involving a high pressure ice layer beneath the seafloor such as Titan or Ganymede. We perform rotating convection simulations in a thin 3D spherical shell with a prescribed heterogeneous bottom heat flux inferred from 3D convection simulations of the underlying mantle (Choblet et al., 2017b). In our simulations, although the amplitude of imposed inner boundary heat flux heterogeneity is rather moderate, preferred longitudes of intense outer boundary heat flux are highly correlated with longitudes of intense inner boundary heat flux. In addition, a small imposed inner boundary large-scale order 2 pattern is amplified at the outer boundary heat flux by the convection in the thin shell. Lastly, deviations from axisymmetry and equatorial symmetry in the outer boundary heat flux increase with the main convection vigor and the amplitude of the inner boundary heterogeneity. In our models polar vs. equatorial cooling is mostly controlled by inertial effects, as was found by Amit et al. (2020) for homogeneous boundary conditions, with the latitudinally equilibrated inner boundary heterogeneity acting to reduce the amplitude of this effect. Our results support polar cooling for Titan&apos;s sub-surface ocean.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Icarus

  • ISSN

    0019-1035

  • e-ISSN

    1090-2643

  • Svazek periodika

    389

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    115232

  • Kód UT WoS článku

    000862371500006

  • EID výsledku v databázi Scopus

    2-s2.0-85138163882