Impact of the Core Deformation on the Tidal Heating and Flow in Enceladus' Subsurface Ocean
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473463" target="_blank" >RIV/00216208:11320/23:10473463 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ry45WffuHd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ry45WffuHd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2023JE007907" target="_blank" >10.1029/2023JE007907</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of the Core Deformation on the Tidal Heating and Flow in Enceladus' Subsurface Ocean
Popis výsledku v původním jazyce
We present a novel approach to modeling the tidal response of icy moons with subsurface oceans. The problem is solved in the time domain and the flow in the ocean is calculated simultaneously with the deformation of the core and the ice shell. To simplify the calculations, we assume that the internal density interfaces are spherical and the effective viscosity of water is equal to or greater than 100 Pa s. The method is used to study the effect of an unconsolidated core on tidal dissipation in Enceladus' ocean. We show that the partitioning of tidal heating between the core and the ocean strongly depends on the thickness of the ocean layer. If the ocean thickness is significantly greater than 1 km, heat production is dominated by tidal dissipation in the core and the amount of heat produced in the ocean is negligible. In contrast, when the ocean thickness is less than about 1 km, tidal heating in the core diminishes and dissipation in the ocean increases, leaving the total heat production unchanged. Extrapolation of our results to realistic conditions indicates that tidal flow is turbulent which suggests that the linearized Navier-Stokes equation may not be appropriate for modeling the tidal response of icy moons. Finally, we compare our results with those obtained by solving the Laplace tidal equations and discuss the limitations of the two-dimensional models of ocean circulation.
Název v anglickém jazyce
Impact of the Core Deformation on the Tidal Heating and Flow in Enceladus' Subsurface Ocean
Popis výsledku anglicky
We present a novel approach to modeling the tidal response of icy moons with subsurface oceans. The problem is solved in the time domain and the flow in the ocean is calculated simultaneously with the deformation of the core and the ice shell. To simplify the calculations, we assume that the internal density interfaces are spherical and the effective viscosity of water is equal to or greater than 100 Pa s. The method is used to study the effect of an unconsolidated core on tidal dissipation in Enceladus' ocean. We show that the partitioning of tidal heating between the core and the ocean strongly depends on the thickness of the ocean layer. If the ocean thickness is significantly greater than 1 km, heat production is dominated by tidal dissipation in the core and the amount of heat produced in the ocean is negligible. In contrast, when the ocean thickness is less than about 1 km, tidal heating in the core diminishes and dissipation in the ocean increases, leaving the total heat production unchanged. Extrapolation of our results to realistic conditions indicates that tidal flow is turbulent which suggests that the linearized Navier-Stokes equation may not be appropriate for modeling the tidal response of icy moons. Finally, we compare our results with those obtained by solving the Laplace tidal equations and discuss the limitations of the two-dimensional models of ocean circulation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research. Planets
ISSN
2169-9097
e-ISSN
2169-9100
Svazek periodika
128
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
e2023JE007907
Kód UT WoS článku
001109822600001
EID výsledku v databázi Scopus
2-s2.0-85177809643