A commercial finite element approach to modelling Glacial Isostatic Adjustment on spherical self-gravitating compressible earth models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473502" target="_blank" >RIV/00216208:11320/23:10473502 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xeWZo8T0rC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xeWZo8T0rC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gji/ggad354" target="_blank" >10.1093/gji/ggad354</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A commercial finite element approach to modelling Glacial Isostatic Adjustment on spherical self-gravitating compressible earth models
Popis výsledku v původním jazyce
This paper presents a method that modifies commercial engineering-oriented finite element packages for the modelling of Glacial Isostatic Adjustment (GIA) on a self-gravitating, compressible and spherical Earth with 3-D structures. The approach, called the iterative finite element body and surface force (FEMIBSF) approach, solves the equilibrium equation for deformation using the ABAQUS finite element package and calculates potential perturbation consistently with finite element theory, avoiding the use of spherical harmonics. The key to this approach lies in computing the mean external body forces for each finite element within the Earth and pressure on Earth's surface and core-mantle boundary (CMB). These quantities, which drive the deformation and stress perturbation of GIA but are not included in the equation of motion of commercial finite element packages, are implemented therein. The method also demonstrates how to calculate degree-1 deformation directly in the spatial domain and Earth-load system for GIA models. To validate the FEMIBSF method, loading Love numbers (LLNs) for homogeneous and layered earth models are calculated and compared with three independent GIA methodologies: the normal-mode method, the iterative body force method and the spectral-finite element method. Results show that the FEMIBSF method can accurately reproduce the unstable modes for the homogeneous compressible model and agree reasonably well with the Love number results from other methods. It is found that the accuracy of the FEMIBSF method increases with higher resolution, but a non-conformal mesh should be avoided due to creating the so-called hanging nodes. The role of a potential force at the CMB is also studied and found to only affect the long-wavelength surface potential perturbation and deformation in the viscous time regime. In conclusion, the FEMIBSF method is ready for use in realistic GIA studies, with modelled vertical and horizontal displacement rates in a disc load case showing agreement with other two GIA methods within the uncertainty level of GNSS measurements.
Název v anglickém jazyce
A commercial finite element approach to modelling Glacial Isostatic Adjustment on spherical self-gravitating compressible earth models
Popis výsledku anglicky
This paper presents a method that modifies commercial engineering-oriented finite element packages for the modelling of Glacial Isostatic Adjustment (GIA) on a self-gravitating, compressible and spherical Earth with 3-D structures. The approach, called the iterative finite element body and surface force (FEMIBSF) approach, solves the equilibrium equation for deformation using the ABAQUS finite element package and calculates potential perturbation consistently with finite element theory, avoiding the use of spherical harmonics. The key to this approach lies in computing the mean external body forces for each finite element within the Earth and pressure on Earth's surface and core-mantle boundary (CMB). These quantities, which drive the deformation and stress perturbation of GIA but are not included in the equation of motion of commercial finite element packages, are implemented therein. The method also demonstrates how to calculate degree-1 deformation directly in the spatial domain and Earth-load system for GIA models. To validate the FEMIBSF method, loading Love numbers (LLNs) for homogeneous and layered earth models are calculated and compared with three independent GIA methodologies: the normal-mode method, the iterative body force method and the spectral-finite element method. Results show that the FEMIBSF method can accurately reproduce the unstable modes for the homogeneous compressible model and agree reasonably well with the Love number results from other methods. It is found that the accuracy of the FEMIBSF method increases with higher resolution, but a non-conformal mesh should be avoided due to creating the so-called hanging nodes. The role of a potential force at the CMB is also studied and found to only affect the long-wavelength surface potential perturbation and deformation in the viscous time regime. In conclusion, the FEMIBSF method is ready for use in realistic GIA studies, with modelled vertical and horizontal displacement rates in a disc load case showing agreement with other two GIA methods within the uncertainty level of GNSS measurements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysical Journal International
ISSN
0956-540X
e-ISSN
1365-246X
Svazek periodika
235
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
2231-2256
Kód UT WoS článku
001075493700002
EID výsledku v databázi Scopus
2-s2.0-85174633999