Broadband Strong Ground Motion Modeling Using Planar Dynamic Rupture With Fractal Parameters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473648" target="_blank" >RIV/00216208:11320/23:10473648 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zsjf0Ui.aw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zsjf0Ui.aw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2023JB026506" target="_blank" >10.1029/2023JB026506</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Broadband Strong Ground Motion Modeling Using Planar Dynamic Rupture With Fractal Parameters
Popis výsledku v původním jazyce
Dynamic rupture modeling represents a promising physics-based approach to strong ground motion simulations. However, its application in a broad frequency range (0-10 Hz), interesting for engineering studies, is challenging. The main reason is that widely used and relatively simple planar fault models with smooth distributions of initial stress and frictional parameters, or even self-similar initial stress, result in ground motions depleted in high-frequency content. Here we propose an efficient approach for the linear slip-weakening friction model on a planar fault based on the Ide and Aochi (2005, ) multiscale model with a small-scale random fractal distribution of the slip-weakening distance D-c. We propose a way to combine these variations with a large-scale deterministic dynamic model. We illustrate the approach on an elliptical model and a smooth model of the 2016 M-w 6.2 Amatrice, Italy, earthquake from low-frequency dynamic rupture inversion. To intensify the incoherence of the rupture propagation, we also include a variation of the strength and initial stress, both correlated with D-c. These additions result in sustained high-frequency radiation during the whole rupture propagation and omega-square source time functions. The new model of the Amatrice earthquake generates synthetics that agree with the local ground motion model up to 5 Hz in terms of spectral accelerations while preserving the average and integral dynamic rupture parameters (e.g., stress drop, fracture and radiated energy). The fractal dynamic model can be easily implemented in any dynamic rupture propagation code and is thus readily applicable in broadband physics-based ground motion predictions for earthquake scenarios in seismic hazard assessment.
Název v anglickém jazyce
Broadband Strong Ground Motion Modeling Using Planar Dynamic Rupture With Fractal Parameters
Popis výsledku anglicky
Dynamic rupture modeling represents a promising physics-based approach to strong ground motion simulations. However, its application in a broad frequency range (0-10 Hz), interesting for engineering studies, is challenging. The main reason is that widely used and relatively simple planar fault models with smooth distributions of initial stress and frictional parameters, or even self-similar initial stress, result in ground motions depleted in high-frequency content. Here we propose an efficient approach for the linear slip-weakening friction model on a planar fault based on the Ide and Aochi (2005, ) multiscale model with a small-scale random fractal distribution of the slip-weakening distance D-c. We propose a way to combine these variations with a large-scale deterministic dynamic model. We illustrate the approach on an elliptical model and a smooth model of the 2016 M-w 6.2 Amatrice, Italy, earthquake from low-frequency dynamic rupture inversion. To intensify the incoherence of the rupture propagation, we also include a variation of the strength and initial stress, both correlated with D-c. These additions result in sustained high-frequency radiation during the whole rupture propagation and omega-square source time functions. The new model of the Amatrice earthquake generates synthetics that agree with the local ground motion model up to 5 Hz in terms of spectral accelerations while preserving the average and integral dynamic rupture parameters (e.g., stress drop, fracture and radiated energy). The fractal dynamic model can be easily implemented in any dynamic rupture propagation code and is thus readily applicable in broadband physics-based ground motion predictions for earthquake scenarios in seismic hazard assessment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06345S" target="_blank" >GA23-06345S: Seismo-geodynamické modelování Helénské subdukce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research: Solid Earth
ISSN
2169-9313
e-ISSN
2169-9356
Svazek periodika
128
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
e2023JB026506
Kód UT WoS článku
001000301500001
EID výsledku v databázi Scopus
—